Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/9021
Title: Inferring the Transcriptional Landscape of Bovine Skeletal Muscle by Integrating Co-Expression Networks
Contributor(s): Hudson, Nicholas J (author); Reverter, Antonio (author); Wang, YongHong (author); Greenwood, Paul (author); Dalrymple, Brian P (author)
Publication Date: 2009
DOI: 10.1371/journal.pone.0007249
Handle Link: https://hdl.handle.net/1959.11/9021
Abstract: Background: Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. Methodology/Principal Findings: Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. Conclusions/Significance: The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development.
Publication Type: Journal Article
Source of Publication: PLoS One, v.4 (10)
Publisher: Public Library of Science (PLoS)
Place of Publication: San Francisco, United States of America
ISSN: 1932-6203
Field of Research (FOR): 060603 Animal Physiology - Systems
Socio-Economic Outcome Codes: 970106 Expanding Knowledge in the Biological Sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 224
Views: 242
Downloads: 0
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

47
checked on Nov 30, 2018

Page view(s)

24
checked on Dec 29, 2018
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.