Author(s) |
Juncheng, Wei
Yan, Shusen
|
Publication Date |
2010
|
Abstract |
We consider an elliptic problem of Ambrosetti-Prodi type involving critical Sobolev exponent on a bounded smooth domain. We show that if the domain has some symmetry, the problem has infinitely many (distinct) solutions whose energy approach to infinity even for a fixed parameter, thereby obtaining a stronger result than the Lazer-McKenna conjecture.
|
Citation |
Scuola Normale Superiore di Pisa. Annali. Classe di Scienze, IX [9](2), p. 423-457
|
ISSN |
2036-2145
0391-173X
|
Link | |
Publisher |
Scuola Normale Superiore di Pisa
|
Title |
On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems
|
Type of document |
Journal Article
|
Entity Type |
Publication
|
Name | Size | format | Description | Link |
---|