On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems

Author(s)
Juncheng, Wei
Yan, Shusen
Publication Date
2010
Abstract
We consider an elliptic problem of Ambrosetti-Prodi type involving critical Sobolev exponent on a bounded smooth domain. We show that if the domain has some symmetry, the problem has infinitely many (distinct) solutions whose energy approach to infinity even for a fixed parameter, thereby obtaining a stronger result than the Lazer-McKenna conjecture.
Citation
Scuola Normale Superiore di Pisa. Annali. Classe di Scienze, IX [9](2), p. 423-457
ISSN
2036-2145
0391-173X
Link
Publisher
Scuola Normale Superiore di Pisa
Title
On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems
Type of document
Journal Article
Entity Type
Publication

Files:

NameSizeformatDescriptionLink