| Title |
|
On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems |
|
|
| Publication Date |
|
| Author(s) |
|
| Type of document |
|
| Language |
|
| Entity Type |
|
| Publisher |
|
Scuola Normale Superiore di Pisa |
|
|
| Place of publication |
|
| UNE publication id |
|
| Abstract |
|
We consider an elliptic problem of Ambrosetti-Prodi type involving critical Sobolev exponent on a bounded smooth domain. We show that if the domain has some symmetry, the problem has infinitely many (distinct) solutions whose energy approach to infinity even for a fixed parameter, thereby obtaining a stronger result than the Lazer-McKenna conjecture. |
|
|
| Link |
|
| Citation |
|
Scuola Normale Superiore di Pisa. Annali. Classe di Scienze, IX [9](2), p. 423-457 |
|
|
| ISSN |
|
| Start page |
|
| End page |
|