In this paper we investigate a diffusive logistic model with a free boundary in one space dimension. We aim to use the dynamics of such a problem to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. We prove a spreading-vanishing dichotomy for this model, namely the species either successfully spreads to all the new environment and stabilizes at a positive equilibrium state, or it fails to establish and dies out in the long run. Sharp criteria for spreading and vanishing are given. Moreover, we show that when spreading occurs, for large time, the expanding front moves at a constant speed. This spreading speed is uniquely determined by an elliptic problem induced from the original model. |
|