Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacDonald, M Ethanen
dc.contributor.authorWilliams, Rebecca Jen
dc.contributor.authorForkert, Nils Den
dc.contributor.authorBerman, Avery J Len
dc.contributor.authorMcCreary, Cheryl Ren
dc.contributor.authorFrayne, Richarden
dc.contributor.authorPike, G Bruceen
dc.date.accessioned2025-01-08T03:36:11Z-
dc.date.available2025-01-08T03:36:11Z-
dc.date.issued2019-08-
dc.identifier.citationCerebral Cortex, 29(8), p. 3282-3293en
dc.identifier.issn1460-2199en
dc.identifier.issn1047-3211en
dc.identifier.urihttps://hdl.handle.net/1959.11/64388-
dc.description.abstract<p>The phenomenon of cortical thinning with age has been well established; however, the measured rate of change varies between studies. The source of this variation could be image acquisition techniques including hardware and vendor specific differences. Databases are often consolidated to increase the number of subjects but underlying differences between these datasets could have undesired effects. We explore differences in cerebral cortex thinning between 4 databases, totaling 1382 subjects. We investigate several aspects of these databases, including: 1) differences between databases of cortical thinning rates versus age, 2) correlation of cortical thinning rates between regions for each database, and 3) regression bootstrapping to determine the effect of the number of subjects included. We also examined the effect of different databases on age prediction modeling. Cortical thinning rates were significantly different between databases in all 68 parcellated regions (ANCOVA, <i>P</i> < 0.001). Subtle differences were observed in correlation matrices and bootstrapping convergence. Age prediction modeling using a leave-one-out cross-validation approach showed varying prediction performance (0.64 < <i>R<sup>2</sup></i> < 0.82) between databases. When a database was used to calibrate the model and then applied to another database, prediction performance consistently decreased. We conclude that there are indeed differences in the measured cortical thinning rates between these large-scale databases.</p>en
dc.languageenen
dc.publisherOxford University Pressen
dc.relation.ispartofCerebral Cortexen
dc.titleInterdatabase variability in cortical thickness measurementsen
dc.typeJournal Articleen
dc.identifier.doi10.1093/cercor/bhy197en
local.contributor.firstnameM Ethanen
local.contributor.firstnameRebecca Jen
local.contributor.firstnameNils Den
local.contributor.firstnameAvery J Len
local.contributor.firstnameCheryl Ren
local.contributor.firstnameRicharden
local.contributor.firstnameG Bruceen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailrwilli90@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage3282en
local.format.endpage3293en
local.peerreviewedYesen
local.identifier.volume29en
local.identifier.issue8en
local.contributor.lastnameMacDonalden
local.contributor.lastnameWilliamsen
local.contributor.lastnameForkerten
local.contributor.lastnameBermanen
local.contributor.lastnameMcCrearyen
local.contributor.lastnameFrayneen
local.contributor.lastnamePikeen
dc.identifier.staffune-id:rwilli90en
local.profile.orcid0000-0002-8949-1197en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64388en
local.date.onlineversion2018-08-23-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleInterdatabase variability in cortical thickness measurementsen
local.relation.fundingsourcenoteN.D.F. is supported by the Canada Research Chairs program. R.F. is the Hopewell Professor of Brain Imaging. G.B.P. is the Campus Alberta Innovation Program (CAIP) Chair of Healthy Brain Aging and Financial contributions from the Canadian Institutes for Health Research (CIHR) and the Campus Alberta Innovation Program (CAIP) are also acknowledged. R.J.W. held a Post-doctoral Fellowship from the NSERC-CREATE I3T program. Conflict of Interest: None declareden
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMacDonald, M Ethanen
local.search.authorWilliams, Rebecca Jen
local.search.authorForkert, Nils Den
local.search.authorBerman, Avery J Len
local.search.authorMcCreary, Cheryl Ren
local.search.authorFrayne, Richarden
local.search.authorPike, G Bruceen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/1c0e7254-596a-4cca-af6f-33a58a3bf844en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/1c0e7254-596a-4cca-af6f-33a58a3bf844en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1c0e7254-596a-4cca-af6f-33a58a3bf844en
local.subject.for20203209 Neurosciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-08en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.