Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64368
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Addeh, Abdoljalil | en |
dc.contributor.author | Vega, Fernando | en |
dc.contributor.author | Morshedi, Amin | en |
dc.contributor.author | Williams, Rebecca J | en |
dc.contributor.author | Bruce Pike, G | en |
dc.contributor.author | Ethan MacDonald, M | en |
dc.date.accessioned | 2025-01-07T22:02:51Z | - |
dc.date.available | 2025-01-07T22:02:51Z | - |
dc.date.issued | 2025-03 | - |
dc.identifier.citation | Magnetic Resonance in Medicine, 93(3), p. 1365-1379 | en |
dc.identifier.issn | 1522-2594 | en |
dc.identifier.issn | 0740-3194 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64368 | - |
dc.description.abstract | <p><b>Purpose:</b> External physiological monitoring is the primary approach to measure and remove effects of low-frequency respiratory variation from BOLD-fMRI signals. However, the acquisition of clean external respiratory data during fMRI is not always possible, so recent research has proposed using machine learning to directly estimate respiratory variation (RV), potentially obviating the need for external monitoring. In this study, we propose an extended method for reconstructing RV waveforms directly from resting state BOLD-fMRI data in healthy adult participants with the inclusion of both BOLD signals and derived head motion parameters. </p><p><b>Methods: </b>In the proposed method, 1D convolutional neural networks (1D-CNNs) used BOLD signals and head motion parameters to reconstruct the RV waveform for the whole fMRI scan time. Resting-state fMRI data and associated respiratory records from the Human Connectome Project in Young Adults (HCP-YA) dataset are used to train and test the proposed method.</p><p><b>Results:</b> Compared to using only BOLD-fMRI data for a CNN input, this approach yielded improvements of 14% in mean absolute error, 24% in mean square error, 14% in correlation, and 12% in dynamic time warping. When tested on independent datasets, the method demonstrated generalizability, even in data with different TRs and physiological conditions. </p><p><b>Conclusion:</b> This study shows that the respiratory variations could be reconstructed from BOLD-fMRI data in the young adult population, and its accuracy could be improved using supportive data such as head motion parameters. The method also performed well on independent datasets with different experimental conditions.</p> | en |
dc.language | en | en |
dc.publisher | John Wiley and Sons, Inc | en |
dc.relation.ispartof | Magnetic Resonance in Medicine | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Machine learning-based estimation of respiratory fluctuations in a healthy adult population using resting state BOLD fMRI and head motion parameters | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1002/mrm.30330 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Abdoljalil | en |
local.contributor.firstname | Fernando | en |
local.contributor.firstname | Amin | en |
local.contributor.firstname | Rebecca J | en |
local.contributor.firstname | G | en |
local.contributor.firstname | M | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | rwilli90@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United State of America | en |
local.format.startpage | 1365 | en |
local.format.endpage | 1379 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 93 | en |
local.identifier.issue | 3 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Addeh | en |
local.contributor.lastname | Vega | en |
local.contributor.lastname | Morshedi | en |
local.contributor.lastname | Williams | en |
local.contributor.lastname | Bruce Pike | en |
local.contributor.lastname | Ethan MacDonald | en |
dc.identifier.staff | une-id:rwilli90 | en |
local.profile.orcid | 0000-0002-8949-1197 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64368 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Machine learning-based estimation of respiratory fluctuations in a healthy adult population using resting state BOLD fMRI and head motion parameters | en |
local.relation.fundingsourcenote | Campus Alberta Innovates Chair; NaturalSciences and Engineering ResearchCouncil, Grant/Award Numbers:DGECR-00124, RGPIN-03552,RGPIN-03880; Canadian Institutes ofHealth Research, Grant/Award Number:FDN-143290 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Addeh, Abdoljalil | en |
local.search.author | Vega, Fernando | en |
local.search.author | Morshedi, Amin | en |
local.search.author | Williams, Rebecca J | en |
local.search.author | Bruce Pike, G | en |
local.search.author | Ethan MacDonald, M | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577 | en |
local.uneassociation | Yes | en |
dc.date.presented | 2025 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2025 | en |
local.year.presented | 2025 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577 | en |
local.subject.for2020 | 3209 Neurosciences | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2025-01-08 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/MachineWillliams2025JournalArticle.pdf | Published Version | 4.85 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License