Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64368
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAddeh, Abdoljalilen
dc.contributor.authorVega, Fernandoen
dc.contributor.authorMorshedi, Aminen
dc.contributor.authorWilliams, Rebecca Jen
dc.contributor.authorBruce Pike, Gen
dc.contributor.authorEthan MacDonald, Men
dc.date.accessioned2025-01-07T22:02:51Z-
dc.date.available2025-01-07T22:02:51Z-
dc.date.issued2025-03-
dc.identifier.citationMagnetic Resonance in Medicine, 93(3), p. 1365-1379en
dc.identifier.issn1522-2594en
dc.identifier.issn0740-3194en
dc.identifier.urihttps://hdl.handle.net/1959.11/64368-
dc.description.abstract<p><b>Purpose:</b> External physiological monitoring is the primary approach to measure and remove effects of low-frequency respiratory variation from BOLD-fMRI signals. However, the acquisition of clean external respiratory data during fMRI is not always possible, so recent research has proposed using machine learning to directly estimate respiratory variation (RV), potentially obviating the need for external monitoring. In this study, we propose an extended method for reconstructing RV waveforms directly from resting state BOLD-fMRI data in healthy adult participants with the inclusion of both BOLD signals and derived head motion parameters. </p><p><b>Methods: </b>In the proposed method, 1D convolutional neural networks (1D-CNNs) used BOLD signals and head motion parameters to reconstruct the RV waveform for the whole fMRI scan time. Resting-state fMRI data and associated respiratory records from the Human Connectome Project in Young Adults (HCP-YA) dataset are used to train and test the proposed method.</p><p><b>Results:</b> Compared to using only BOLD-fMRI data for a CNN input, this approach yielded improvements of 14% in mean absolute error, 24% in mean square error, 14% in correlation, and 12% in dynamic time warping. When tested on independent datasets, the method demonstrated generalizability, even in data with different TRs and physiological conditions. </p><p><b>Conclusion:</b> This study shows that the respiratory variations could be reconstructed from BOLD-fMRI data in the young adult population, and its accuracy could be improved using supportive data such as head motion parameters. The method also performed well on independent datasets with different experimental conditions.</p>en
dc.languageenen
dc.publisherJohn Wiley and Sons, Incen
dc.relation.ispartofMagnetic Resonance in Medicineen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMachine learning-based estimation of respiratory fluctuations in a healthy adult population using resting state BOLD fMRI and head motion parametersen
dc.typeJournal Articleen
dc.identifier.doi10.1002/mrm.30330en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAbdoljalilen
local.contributor.firstnameFernandoen
local.contributor.firstnameAminen
local.contributor.firstnameRebecca Jen
local.contributor.firstnameGen
local.contributor.firstnameMen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailrwilli90@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited State of Americaen
local.format.startpage1365en
local.format.endpage1379en
local.peerreviewedYesen
local.identifier.volume93en
local.identifier.issue3en
local.access.fulltextYesen
local.contributor.lastnameAddehen
local.contributor.lastnameVegaen
local.contributor.lastnameMorshedien
local.contributor.lastnameWilliamsen
local.contributor.lastnameBruce Pikeen
local.contributor.lastnameEthan MacDonalden
dc.identifier.staffune-id:rwilli90en
local.profile.orcid0000-0002-8949-1197en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64368en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMachine learning-based estimation of respiratory fluctuations in a healthy adult population using resting state BOLD fMRI and head motion parametersen
local.relation.fundingsourcenoteCampus Alberta Innovates Chair; NaturalSciences and Engineering ResearchCouncil, Grant/Award Numbers:DGECR-00124, RGPIN-03552,RGPIN-03880; Canadian Institutes ofHealth Research, Grant/Award Number:FDN-143290en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAddeh, Abdoljalilen
local.search.authorVega, Fernandoen
local.search.authorMorshedi, Aminen
local.search.authorWilliams, Rebecca Jen
local.search.authorBruce Pike, Gen
local.search.authorEthan MacDonald, Men
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577en
local.uneassociationYesen
dc.date.presented2025-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2025en
local.year.presented2025en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/36450f71-bb42-4de2-8964-e7f8aef79577en
local.subject.for20203209 Neurosciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-08en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/MachineWillliams2025JournalArticle.pdfPublished Version4.85 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons