Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63898
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamprasert, Nantapongen
dc.contributor.authorAliloo, Hassanen
dc.contributor.authorVan Der Werf, Julius H Jen
dc.contributor.authorDuff, Christian Jen
dc.contributor.authorClark, Samuel Aen
dc.date.accessioned2024-11-16T10:46:45Z-
dc.date.available2024-11-16T10:46:45Z-
dc.identifier.citationJournal of Animal Breeding and Genetics, p. 1-11en
dc.identifier.issn1439-0388en
dc.identifier.issn0931-2668en
dc.identifier.urihttps://hdl.handle.net/1959.11/63898-
dc.description.abstract<p>Whole-genome sequence (WGS) data was used to estimate genomic breeding values for growth and carcass traits in Australian Angus cattle. The study aimed to compare the accuracy and bias of genomic predictions with three marker densities, including 50K, high-density (HD) and WGS. The dataset used in this study consisted of animals born between 2013 and 2022. Body weight traits included birthweight, weight at 400 days and weight at 600 days of age. The carcass traits were carcass weight, carcass intramuscular fat and carcass marbling score. The accuracy and bias of prediction were assessed using the cross-validation. Further, for the growth traits, animals in the validation group were subdivided into two subgroups, which were moderately or highly related to the reference. Genomic best linear unbiased prediction (GBLUP) was used to compare genomic predictions with the three marker densities. The prediction accuracies were generally similar across the marker densities, ranging between 0.61 and 0.68 for the body weight traits and between 0.40 and 0.52 for the carcass traits. However, the accuracies marginally decreased as the marker density increased for all the traits studied. A similar lack of difference was found when considering the accuracy by the relatedness subgroups. The results indicated that no meaningful difference in prediction accuracy was estimated when comparing the three marker densities due to the population structure. In conclusion, there was no substantial improvement in genomic prediction when using the WGS in this study.</p>en
dc.languageenen
dc.publisherWiley-Blackwell Verlag GmbHen
dc.relation.ispartofJournal of Animal Breeding and Geneticsen
dc.titleGenomic Prediction Using Imputed Whole-Genome Sequence Data in Australian Angus Cattleen
dc.typeJournal Articleen
dc.identifier.doi10.1111/jbg.12912en
local.contributor.firstnameNantapongen
local.contributor.firstnameHassanen
local.contributor.firstnameJulius H Jen
local.contributor.firstnameChristian Jen
local.contributor.firstnameSamuel Aen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailnkampras@myune.edu.auen
local.profile.emailhaliloo@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.profile.emailcduff2@myune.edu.auen
local.profile.emailsclark37@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.format.startpage1en
local.format.endpage11en
local.peerreviewedYesen
local.contributor.lastnameKampraserten
local.contributor.lastnameAlilooen
local.contributor.lastnameVan Der Werfen
local.contributor.lastnameDuffen
local.contributor.lastnameClarken
dc.identifier.staffune-id:nkamprasen
dc.identifier.staffune-id:halilooen
dc.identifier.staffune-id:jvanderwen
dc.identifier.staffune-id:cduff2en
dc.identifier.staffune-id:sclark37en
local.profile.orcid0000-0002-5587-6929en
local.profile.orcid0000-0003-2512-1696en
local.profile.orcid0000-0002-3072-1736en
local.profile.orcid0000-0001-8605-1738en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63898en
local.date.onlineversion2024-11-15-
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
local.title.maintitleGenomic Prediction Using Imputed Whole-Genome Sequence Data in Australian Angus Cattleen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKamprasert, Nantapongen
local.search.authorAliloo, Hassanen
local.search.authorVan Der Werf, Julius H Jen
local.search.authorDuff, Christian Jen
local.search.authorClark, Samuel Aen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/c2dfa6ad-5144-4276-9cde-92e3c38482fden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/c2dfa6ad-5144-4276-9cde-92e3c38482fden
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020100401 Beef cattleen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-11-21en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.