Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63859
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorgbor, Benjamin Adjahen
dc.contributor.authorSinha, Priyakanten
dc.contributor.authorRahman, Muhammad Moshiuren
dc.contributor.authorRobson, Andrewen
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorSuarez, Luz Angelicaen
dc.date.accessioned2024-11-12T00:25:49Z-
dc.date.available2024-11-12T00:25:49Z-
dc.date.issued2024-11-08-
dc.identifier.citationRemote Sensing, 16(22), p. 1-23en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/63859-
dc.description.abstract<p>Tree- and block-level prediction of mango yield is important for farm operations, but current manual methods are inefficient. Previous research has identified the accuracies of mango yield forecasting using very-high-resolution (VHR) satellite imagery and an '18-tree' stratified sampling method. However, this approach still requires infield sampling to calibrate canopy reflectance and the derived block-level algorithms are unable to translate to other orchards due to the influences of abiotic and biotic conditions. To better appreciate these influences, individual tree yields and corresponding canopy reflectance properties were collected from 2015 to 2021 for 1958 individual mango trees from 55 orchard blocks across 14 farms located in three mango growing regions of Australia. A linear regression analysis of the block-level data revealed the non-existence of a universal relationship between the 24 vegetation indices (VIs) derived from VHR satellite data and fruit count per tree, an outcome likely due to the influence of location, season, management and cultivar. The tree-level fruit count predicted using a random forest (RF) model trained on all calibration data produced a percentage root mean squared error (PRMSE) of 26.5% and a mean absolute error (MAE) of 48 fruits/tree. The lowest PRMSEs produced from RF-based models developed from location, season and cultivar subsets at the individual tree level ranged from 19.3% to 32.6%. At the block level, the PRMSE for the combined model was 10.1% and the lowest values for the location, seasonal and cultivar subset models varied between 7.2% and 10.0% upon validation. Generally, the block-level predictions outperformed the individual tree-level models. Maps were produced to provide mango growers with a visual representation of yield variability across orchards. This enables better identification and management of the influence of abiotic and biotic constraints on production. Future research could investigate the causes of spatial yield variability in mango orchards.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleExploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scalesen
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs16224170en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameBenjamin Adjahen
local.contributor.firstnamePriyakanten
local.contributor.firstnameMuhammad Moshiuren
local.contributor.firstnameAndrewen
local.contributor.firstnameJamesen
local.contributor.firstnameLuz Angelicaen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolEcosystem Management, School of Environmental and Rural Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailatorgbo2@une.edu.auen
local.profile.emailpsinha2@une.edu.auen
local.profile.emailmrahma37@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.profile.emailjbrinkho@une.edu.auen
local.profile.emaillsuarezc@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber4170en
local.format.startpage1en
local.format.endpage23en
local.peerreviewedYesen
local.identifier.volume16en
local.identifier.issue22en
local.access.fulltextYesen
local.contributor.lastnameTorgboren
local.contributor.lastnameSinhaen
local.contributor.lastnameRahmanen
local.contributor.lastnameRobsonen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameSuarezen
dc.identifier.staffune-id:une-atorgbo2en
dc.identifier.staffune-id:psinha2en
dc.identifier.staffune-id:mrahma37en
dc.identifier.staffune-id:arobson7en
dc.identifier.staffune-id:jbrinkhoen
dc.identifier.staffune-id:lsuarezcen
local.profile.orcid0000-0002-0278-6866en
local.profile.orcid0000-0001-6430-0588en
local.profile.orcid0000-0001-5762-8980en
local.profile.orcid0000-0002-0721-2458en
local.profile.orcid0000-0002-4233-2172en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63859en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scalesen
local.relation.fundingsourcenoteThe authors are grateful to the Australian Government through the Destination Australia Program (DAP) Scholarship initiative for their support.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTorgbor, Benjamin Adjahen
local.search.authorSinha, Priyakanten
local.search.authorRahman, Muhammad Moshiuren
local.search.authorRobson, Andrewen
local.search.authorBrinkhoff, Jamesen
local.search.authorSuarez, Luz Angelicaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/6c8184bc-ec19-441e-8ae5-83e40a58b4f3en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/6c8184bc-ec19-441e-8ae5-83e40a58b4f3en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/6c8184bc-ec19-441e-8ae5-83e40a58b4f3en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.seo2020260599 Horticultural crops not elsewhere classifieden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ExploringTheRelationshipTorgborSinhaRahmanRobsonBrinkhoffSuarez2024JournalArticle.pdfPublished version7.25 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons