Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63760
Title: Effect of substituents in governing the homolytic gas-phase P–H bond dissociation enthalpies of phosphine-type oxides (R1R2P(=O)H)
Contributor(s): O'Reilly, Robert J  (author)orcid ; Balanay, Mannix P (author)
Publication Date: 2024
DOI: 10.1016/j.cdc.2024.101164
Handle Link: https://hdl.handle.net/1959.11/63760
Abstract: 

This study reports the gas-phase homolytic P–H BDEs of a set of 30 phosphine-type oxides (i.e., R1R2P(=O)H) obtained using the W1w thermochemical protocol. We note that the P–H BDEs (at 298 K) of the species in this dataset differ by as much as 157.2 kJ mol–1, with (H2B)2P(=O)H having the lowest BDE (249.3 kJ mol–1) and F2P(=O)H having the highest (406.5 kJ mol–1). Furthermore, using the full set of 30 all-electron, non-relativistic, vibrationless bottom-of-the-well W1w P–H BDEs as reference values, we have identified several well-performing DFT methods that could be applied to the computation of the P–H BDEs of phosphine-type oxides. The best-performing DFTs (in conjunction with the A'VTZ basis set) were shown to be MN12-SX (MAD = 1.7 kJ mol–1) and MN12-L (MAD = 2.7 kJ mol–1).

Publication Type: Journal Article
Source of Publication: Chemical Data Collections, v.54
Publisher: Elsevier BV
Place of Publication: The Netherlands
ISSN: 2405-8300
Fields of Research (FoR) 2020: 3407 Theoretical and computational chemistry
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Show full item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.