Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLamichhane, Sushilen
dc.contributor.authorAdhikari, Kabindraen
dc.contributor.authorKumar, Laliten
dc.date.accessioned2024-10-03T04:18:12Z-
dc.date.available2024-10-03T04:18:12Z-
dc.date.issued2021-
dc.identifier.citationRemote Sensing, 13(23), p. 1-16en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/63294-
dc.description.abstract<p>Although algorithms are well developed to predict soil organic carbon (SOC), selecting appropriate covariates to improve prediction accuracy is an ongoing challenge. Terrain attributes and remote sensing data are the most common covariates for SOC prediction. This study tested the predictive performance of nine different combinations of topographic variables and multi-season remotely sensed data to improve the prediction of SOC in the cultivated lands of a middle mountain catchment of Nepal. The random forest method was used to predict SOC contents, and the quantile regression forest for quantifying the prediction uncertainty. Prediction of SOC contents was improved when remote sensing data of multiple seasons were used together with the terrain variables. Remote sensing data of multiple seasons capture the dynamic conditions of surface soils more effectively than using an image of a single season. It is concluded that the use of remote sensing images of multiple seasons instead of a snapshot of a single period may be more effective for improving the prediction of SOC in a digital soil mapping framework. However, an image with the right timing of cropping season can provide comparable results if a parsimonious model is preferred.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleUse of Multi-Seasonal Satellite Images to Predict SOC from Cultivated Lands in a Montane Ecosystemen
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs13234772en
dcterms.accessRightsUNE Greenen
dc.subject.keywordstopographyen
dc.subject.keywordsdigital soil mappingen
dc.subject.keywordsNepalen
dc.subject.keywordsSentinel-2en
dc.subject.keywordssoil organic carbonen
dc.subject.keywordsEnvironmental Sciencesen
dc.subject.keywordsGeosciences, Multidisciplinaryen
dc.subject.keywordsRemote Sensingen
dc.subject.keywordsImaging Science & Photographic Technologyen
dc.subject.keywordsEnvironmental Sciences & Ecologyen
dc.subject.keywordsGeologyen
local.contributor.firstnameSushilen
local.contributor.firstnameKabindraen
local.contributor.firstnameLaliten
local.profile.schoolSchool of Environmental and Rural scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslamichh@myune.edu.auen
local.profile.emaillkumar@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber4772en
local.format.startpage1en
local.format.endpage16en
local.peerreviewedYesen
local.identifier.volume13en
local.identifier.issue23en
local.access.fulltextYesen
local.contributor.lastnameLamichhaneen
local.contributor.lastnameAdhikarien
local.contributor.lastnameKumaren
dc.identifier.staffune-id:slamichhen
dc.identifier.staffune-id:lkumaren
local.profile.orcid0000-0002-9205-756Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/63294en
local.date.onlineversion2021-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUse of Multi-Seasonal Satellite Images to Predict SOC from Cultivated Lands in a Montane Ecosystemen
local.relation.fundingsourcenoteThis research and the article processing charge were funded by the International Postgraduate Research Award (IPRA), University of New England, Australia.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLamichhane, Sushilen
local.search.authorAdhikari, Kabindraen
local.search.authorKumar, Laliten
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/c08497c0-146f-4916-aed1-6c2961b37a26en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2021en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/c08497c0-146f-4916-aed1-6c2961b37a26en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/c08497c0-146f-4916-aed1-6c2961b37a26en
local.subject.for20204013 Geomatic engineeringen
local.subject.seo2020tbden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/UseLamichhaneKumar2021JournalArticle.pdfPublished version6.31 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons