Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThompson, Jasonen
dc.contributor.authorMcClure, Rodericken
dc.contributor.authorBlakely, Tonyen
dc.contributor.authorWilson, Nicken
dc.contributor.authorBaker, Michael Gen
dc.contributor.authorWijnands, Jasper Sen
dc.contributor.authorDe Sa, Thiago Hericken
dc.contributor.authorNice, Kerryen
dc.contributor.authorCruz, Camiloen
dc.contributor.authorStevenson, Marken
dc.date.accessioned2024-09-04T04:31:33Z-
dc.date.available2024-09-04T04:31:33Z-
dc.date.issued2022-
dc.identifier.citationAustralian and New Zealand Journal of Public Health, 46(3), p. 292-303en
dc.identifier.issn1753-6405en
dc.identifier.urihttps://hdl.handle.net/1959.11/62540-
dc.description.abstract<p><b>Objective:</b> In 2020, we developed a public health decision-support model for mitigating the spread of SARS-CoV-2 infections in Australia and New Zealand. Having demonstrated its capacity to describe disease progression patterns during both countries' first waves of infections, we describe its utilisation in Victoria in underpinning the State Government's then 'RoadMap to Reopening'.</p> <p><b>Methods:</b> Key aspects of population demographics, disease, spatial and behavioural dynamics, as well as the mechanism, timing, and effect of non-pharmaceutical public health policies responses on the transmission of SARS-CoV-2 in both countries were represented in an agent-based model. We considered scenarios related to the imposition and removal of nonpharmaceutical interventions on the estimated progression of SARS-CoV-2 infections.</p> <p><b>Results:</b> Wave 1 results suggested elimination of community transmission of SARS-CoV-2 was possible in both countries given sustained public adherence to social restrictions beyond 60 days' duration. However, under scenarios of decaying adherence to restrictions, a second wave of infections (Wave 2) was predicted in Australia. In Victoria's second wave, we estimated in early September 2020 that a rolling 14-day average of <5 new cases per day was achievable on or around 26 October. Victoria recorded a 14-day rolling average of 4.6 cases per day on 25 October.</p> <p><b>Conclusions:</b> Elimination of SARS-CoV-2 transmission represented in faithfully constructed agent-based models can be replicated in the real world.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofAustralian and New Zealand Journal of Public Healthen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleModelling SARS-CoV-2 disease progression in Australia and New Zealand: an account of an agent-based approach to support public health decision-makingen
dc.typeJournal Articleen
dc.identifier.doi10.1111/1753-6405.13221en
local.contributor.firstnameJasonen
local.contributor.firstnameRodericken
local.contributor.firstnameTonyen
local.contributor.firstnameNicken
local.contributor.firstnameMichael Gen
local.contributor.firstnameJasper Sen
local.contributor.firstnameThiago Hericken
local.contributor.firstnameKerryen
local.contributor.firstnameCamiloen
local.contributor.firstnameMarken
local.profile.schoolSchool of Rural Medicineen
local.profile.emailrmcclure@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage292en
local.format.endpage303en
local.identifier.volume46en
local.identifier.issue3en
local.title.subtitlean account of an agent-based approach to support public health decision-makingen
local.access.fulltextYesen
local.contributor.lastnameThompsonen
local.contributor.lastnameMcClureen
local.contributor.lastnameBlakelyen
local.contributor.lastnameWilsonen
local.contributor.lastnameBakeren
local.contributor.lastnameWijnandsen
local.contributor.lastnameDe Saen
local.contributor.lastnameNiceen
local.contributor.lastnameCruzen
local.contributor.lastnameStevensonen
dc.identifier.staffune-id:rmcclureen
local.profile.orcid0000-0002-9067-8282en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62540en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleModelling SARS-CoV-2 disease progression in Australia and New Zealanden
local.relation.fundingsourcenoteMS is funded by an NHMRC Fellowship (APP1136250), JT is funded by an ARC DECRA Fellowship (DE180101411)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorThompson, Jasonen
local.search.authorMcClure, Rodericken
local.search.authorBlakely, Tonyen
local.search.authorWilson, Nicken
local.search.authorBaker, Michael Gen
local.search.authorWijnands, Jasper Sen
local.search.authorDe Sa, Thiago Hericken
local.search.authorNice, Kerryen
local.search.authorCruz, Camiloen
local.search.authorStevenson, Marken
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/f99e313f-8ef8-4fd5-990d-7598a41979afen
local.uneassociationUnknownen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/f99e313f-8ef8-4fd5-990d-7598a41979afen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/f99e313f-8ef8-4fd5-990d-7598a41979afen
local.subject.for20203505 Human resources and industrial relationsen
local.subject.seo2020tbden
local.date.end2022-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-09-04en
Appears in Collections:Journal Article
School of Rural Medicine
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ModellingMcClure2022JournalArticle.pdfPublished version1.15 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons