Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Haoxien
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.contributor.authorZhu, Mingen
dc.date.accessioned2024-07-30T08:22:34Z-
dc.date.available2024-07-30T08:22:34Z-
dc.date.issued2017-01-30-
dc.identifier.citationJournal of Intelligent and Fuzzy Systems, 32(2), p. 1575-1584en
dc.identifier.issn1875-8967en
dc.identifier.issn1064-1246en
dc.identifier.urihttps://hdl.handle.net/1959.11/61863-
dc.description.abstract<p>In this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing devices. It is constructed in a similar fashion of how DNA formed: built up by four essential elements. As the DNA produces phenotypes, the Neural Knowledge DNA carries information and knowledge via its four essential interrelated elements, namely, Networks, Experiences, States, and Actions; which store the detail of the artificial neural networks for training and reusing such knowledge. The novelty of this approach is that it uses previous decisional experience to collect and expand intelligence for future decision making formalized support. The experience based collective computational techniques of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) are used to develop aforesaid decisional sustenance. Together with artificial neural networks and reinforcement learning, the proposed Neural Knowledge DNA is used to catch knowledge of a very simple maze problem, and the results show that our Neural Knowledge DNA is a very promising knowledge representation approach for artificial neural network-based intelligent systems.</p>en
dc.languageenen
dc.publisherIOS Pressen
dc.relation.ispartofJournal of Intelligent and Fuzzy Systemsen
dc.titleTowards neural knowledge DNAen
dc.typeJournal Articleen
dc.identifier.doi10.3233/JIFS-169151en
local.contributor.firstnameHaoxien
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.contributor.firstnameMingen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage1575en
local.format.endpage1584en
local.peerreviewedYesen
local.identifier.volume32en
local.identifier.issue2en
local.contributor.lastnameZhangen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
local.contributor.lastnameZhuen
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61863en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTowards neural knowledge DNAen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorZhang, Haoxien
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.search.authorZhu, Mingen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a8305375-af4a-4b90-a84e-0bdd426b7c2ben
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-01en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 23, 2024

Page view(s)

124
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.