Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Feien
dc.contributor.authorZhang, Haoxien
dc.contributor.authorWang, Juanen
dc.contributor.authorLiu, Yongen
dc.contributor.authorGao, Luluen
dc.contributor.authorXu, Xiangen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-29T05:13:01Z-
dc.date.available2024-07-29T05:13:01Z-
dc.date.issued2018-
dc.identifier.citationCybernetics and Systems, 49(5-6), p. 412-419en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61855-
dc.description.abstract<p>In this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands based on learning from past valid driving behavior data on a simulator.</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleToward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNAen
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2017.1418788en
local.contributor.firstnameFeien
local.contributor.firstnameHaoxien
local.contributor.firstnameJuanen
local.contributor.firstnameYongen
local.contributor.firstnameLuluen
local.contributor.firstnameXiangen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage412en
local.format.endpage419en
local.peerreviewedYesen
local.identifier.volume49en
local.identifier.issue5-6en
local.contributor.lastnameLien
local.contributor.lastnameZhangen
local.contributor.lastnameWangen
local.contributor.lastnameLiuen
local.contributor.lastnameGaoen
local.contributor.lastnameXuen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61855en
local.date.onlineversion2018-02-12-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleToward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNAen
local.relation.fundingsourcenoteThis work was supported by the Scientific Research Foundation of Sichuan Province as a part of the Project 2016GZ0343.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Feien
local.search.authorZhang, Haoxien
local.search.authorWang, Juanen
local.search.authorLiu, Yongen
local.search.authorGao, Luluen
local.search.authorXu, Xiangen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c0826ec8-9c54-4d8c-82bf-595f76e75246en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-01en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.