Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61850
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | de Oliveira, Caterine Silva | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-07-29T01:46:42Z | - |
dc.date.available | 2024-07-29T01:46:42Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Cybernetics and Systems, 49(5-6), p. 355-367 | en |
dc.identifier.issn | 1087-6553 | en |
dc.identifier.issn | 0196-9722 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61850 | - |
dc.description.abstract | <p>This work is part of an effort to develop of a knowledge–vision integration platform for hazard control in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment. The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting experiences from a new scenario, querying the user, and using their feedback to retrain the system through a hierarchical recognition structure using convolutional neural network (CNN). Thereafter, in contrast to the random sampling, the concept of active learning based on pruning of redundant points is tested. Results obtained from both random sampling and active learning are compared with a rigid systems that is not capable to aggregate new experiences as it runs. From the results obtained, it can be concluded that the classification accuracy improves greatly by adding new experiences, which makes it possible to customize the service according to each scenario and application as it functions. In addition, the active learning approach was able to reduce the user query and slightly improve the overall classification performance, when compared with random sampling.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis Inc | en |
dc.relation.ispartof | Cybernetics and Systems | en |
dc.title | Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01969722.2017.1418714 | en |
local.contributor.firstname | Caterine Silva | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 355 | en |
local.format.endpage | 367 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 49 | en |
local.identifier.issue | 5-6 | en |
local.contributor.lastname | de Oliveira | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61850 | en |
local.date.onlineversion | 2018-01-22 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | de Oliveira, Caterine Silva | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2018 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/a24555d1-2ca6-41ca-921a-8e1460727bad | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-01 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
7
checked on Nov 23, 2024
Page view(s)
154
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.