Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Oliveira, Caterine Silvaen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-29T01:46:42Z-
dc.date.available2024-07-29T01:46:42Z-
dc.date.issued2018-
dc.identifier.citationCybernetics and Systems, 49(5-6), p. 355-367en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61850-
dc.description.abstract<p>This work is part of an effort to develop of a knowledge–vision integration platform for hazard control in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment. The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting experiences from a new scenario, querying the user, and using their feedback to retrain the system through a hierarchical recognition structure using convolutional neural network (CNN). Thereafter, in contrast to the random sampling, the concept of active learning based on pruning of redundant points is tested. Results obtained from both random sampling and active learning are compared with a rigid systems that is not capable to aggregate new experiences as it runs. From the results obtained, it can be concluded that the classification accuracy improves greatly by adding new experiences, which makes it possible to customize the service according to each scenario and application as it functions. In addition, the active learning approach was able to reduce the user query and slightly improve the overall classification performance, when compared with random sampling.</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleFlexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaningen
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2017.1418714en
local.contributor.firstnameCaterine Silvaen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage355en
local.format.endpage367en
local.peerreviewedYesen
local.identifier.volume49en
local.identifier.issue5-6en
local.contributor.lastnamede Oliveiraen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61850en
local.date.onlineversion2018-01-22-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleFlexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaningen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorde Oliveira, Caterine Silvaen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a24555d1-2ca6-41ca-921a-8e1460727baden
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-01en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 23, 2024

Page view(s)

154
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.