Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Oliveira, Caterine Silvaen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-28T21:24:05Z-
dc.date.available2024-07-28T21:24:05Z-
dc.date.issued2019-
dc.identifier.citationCybernetics and Systems, 50(2), p. 197-207en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61844-
dc.description.abstract<p>This work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves extracted from frames of low resolution videos), which found the Deep Learning (DL) methods as the most suitable ones to integrate our platform, the objective of this paper is to test two DL algorithms: Single Shot Detector (SSD) and Faster Region-based Convolutional Network (Faster R-CNN). The testing uses pretrained models on a second version of our PPE dataset (containing 11 classes of objects) and evaluates which of examined algorithms is more appropriate to compose our system reasoning.</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleVisual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)en
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2019.1565116en
local.contributor.firstnameCaterine Silvaen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage197en
local.format.endpage207en
local.peerreviewedYesen
local.identifier.volume50en
local.identifier.issue2en
local.contributor.lastnamede Oliveiraen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61844en
local.date.onlineversion2019-02-07-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleVisual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorde Oliveira, Caterine Silvaen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2019en
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/79cb0ca6-2c6f-4cf9-89d8-46e4c28f57a7en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-01en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

Page view(s)

160
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.