Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61844
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | de Oliveira, Caterine Silva | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-07-28T21:24:05Z | - |
dc.date.available | 2024-07-28T21:24:05Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Cybernetics and Systems, 50(2), p. 197-207 | en |
dc.identifier.issn | 1087-6553 | en |
dc.identifier.issn | 0196-9722 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61844 | - |
dc.description.abstract | <p>This work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves extracted from frames of low resolution videos), which found the Deep Learning (DL) methods as the most suitable ones to integrate our platform, the objective of this paper is to test two DL algorithms: Single Shot Detector (SSD) and Faster Region-based Convolutional Network (Faster R-CNN). The testing uses pretrained models on a second version of our PPE dataset (containing 11 classes of objects) and evaluates which of examined algorithms is more appropriate to compose our system reasoning.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis Inc | en |
dc.relation.ispartof | Cybernetics and Systems | en |
dc.title | Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC) | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01969722.2019.1565116 | en |
local.contributor.firstname | Caterine Silva | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 197 | en |
local.format.endpage | 207 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 50 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | de Oliveira | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61844 | en |
local.date.onlineversion | 2019-02-07 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC) | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | de Oliveira, Caterine Silva | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2019 | en |
local.year.published | 2019 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/79cb0ca6-2c6f-4cf9-89d8-46e4c28f57a7 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-01 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Nov 23, 2024
Page view(s)
160
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.