Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShafiq, Syed Imranen
dc.contributor.authorSzczerbicki, Edwarden
dc.contributor.authorSanin, Cesaren
dc.date.accessioned2024-07-26T07:43:28Z-
dc.date.available2024-07-26T07:43:28Z-
dc.date.issued2019-
dc.identifier.citationProcedia Computer Science, v.159, p. 1976-1985en
dc.identifier.issn1877-0509en
dc.identifier.urihttps://hdl.handle.net/1959.11/61829-
dc.description.abstract<p>Industry 4.0 offers a comprehensive, interlinked, and holistic approach to manufacturing. It connects physical with digital and allows for better collaboration and access across departments, partners, vendors, product, and people. Consequently, it involves complex designing of highly specialized state of the art technologies. Thus, companies face formidable challenges in the adoption of these new technologies. In this paper, critical components of Industry 4.0, their significance and challenges as identified in the literature are presented. Furthermore, a test case framework for the implementation of Industry 4.0 is proposed. The system covers four layers: decision support, data processing, data acquisition and transmission and sensors. Condition monitoring data from machines and shop floor are captured, stored, organized and visualized in real time. Knowledge representation technique of SOEKS/DDNA is used for doing the semantic analysis of the data, Virtual Engineering Object (VEO), Virtual Engineering Process (VEP) and Virtual Engineering Factory (VEF) are used for creating virtual engineering objects, process and factory respectively, Python and its utility Bokeh is used for visualization. The proposed Industry 4.0 framework will make it possible to gather and analyze data across machines, processes and resources supporting faster, flexible, and more efficient control and production of higher-quality goods at reduced costs.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofProcedia Computer Scienceen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleProposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0en
dc.typeConference Publicationen
dc.relation.conferenceKES 2019: 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systemsen
dc.identifier.doi10.1016/j.procs.2019.09.370en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameSyed Imranen
local.contributor.firstnameEdwarden
local.contributor.firstnameCesaren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference4th to 6th of September, 2019en
local.conference.placeBudapest, Hungaryen
local.publisher.placeThe Netherlandsen
local.format.startpage1976en
local.format.endpage1985en
local.peerreviewedYesen
local.identifier.volume159en
local.access.fulltextYesen
local.contributor.lastnameShafiqen
local.contributor.lastnameSzczerbickien
local.contributor.lastnameSaninen
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61829en
local.date.onlineversion2019-10-14-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleProposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0en
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsKES 2019: 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary, 4th to 6th of September, 2019en
local.search.authorShafiq, Syed Imranen
local.search.authorSzczerbicki, Edwarden
local.search.authorSanin, Cesaren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/6a66239d-2d83-4f46-886a-112db52c0298en
local.uneassociationNoen
local.atsiresearchNoen
local.conference.venueDanubius Health Spa Resort Margitszigeten
local.sensitive.culturalNoen
local.year.available2019en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/6a66239d-2d83-4f46-886a-112db52c0298en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/6a66239d-2d83-4f46-886a-112db52c0298en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-09en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/PropositionShafiq2019ConferencePublication.pdfPublished Version793.92 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons