Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61810
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Haoxi | en |
dc.contributor.author | Li, Fei | en |
dc.contributor.author | Wang, Juan | en |
dc.contributor.author | Wang, Zuli | en |
dc.contributor.author | Shi, Lei | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-07-25T07:46:18Z | - |
dc.date.available | 2024-07-25T07:46:18Z | - |
dc.date.issued | 2020-02 | - |
dc.identifier.citation | Cybernetics and Systems, 51(2), p. 258-264 | en |
dc.identifier.issn | 1087-6553 | en |
dc.identifier.issn | 0196-9722 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61810 | - |
dc.description.abstract | <p>The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet of Things that enables IoT to extract knowledge from past experiences, as well as to store, evolve, share, and reuse such knowledge aiming for smart functions. By catching decision events, this approach helps IoT gather its own daily operation experiences, and it uses such experiences for knowledge discovery with the support of machine learning technologies. An initial case study is presented at the end of this paper to demonstrate how this approach can help IoT applications become smart: the proposed approach is applied to fitness wristbands to enable human action recognition.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis Inc | en |
dc.relation.ispartof | Cybernetics and Systems | en |
dc.title | The Neural Knowledge DNA Based Smart Internet of Things | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01969722.2019.1705545 | en |
local.contributor.firstname | Haoxi | en |
local.contributor.firstname | Fei | en |
local.contributor.firstname | Juan | en |
local.contributor.firstname | Zuli | en |
local.contributor.firstname | Lei | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 258 | en |
local.format.endpage | 264 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 51 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | Zhang | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Shi | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61810 | en |
local.date.onlineversion | 2020-01-20 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The Neural Knowledge DNA Based Smart Internet of Things | en |
local.relation.fundingsourcenote | This work was supported by the Sichuan Science and Technology Program under Grant 2019YFH0185. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Zhang, Haoxi | en |
local.search.author | Li, Fei | en |
local.search.author | Wang, Juan | en |
local.search.author | Wang, Zuli | en |
local.search.author | Shi, Lei | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2020 | en |
local.year.published | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/1cbd5d9f-8979-4acc-819c-a5088d5526de | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-26 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.