Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Haoxien
dc.contributor.authorLi, Feien
dc.contributor.authorWang, Juanen
dc.contributor.authorZhou, Yangen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-23T09:11:34Z-
dc.date.available2024-07-23T09:11:34Z-
dc.date.issued2020-02-
dc.identifier.citationCybernetics and Systems, 51(2), p. 103-114en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61776-
dc.description.abstract<p>With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and safer car controls. In this paper, we propose a novel approach to extract the driver’s driving behavioral fingerprints based on our conceptual framework Experience-Oriented Intelligent Things (EOIT). EOIT is a learning system that has the potential to enable Internet of Cognitive Things (IoCT) where knowledge can be extracted from experience, stored, evolved, shared, and reused aiming for cognition and thus intelligent functionality of things. By catching driving data, this approach helps cars to collect the driver’s pedal and steering operations and store them as experience; eventually, it uses obtained experience for the driver’s driving behavioral fingerprint extraction. The initial experimental implementation is presented in the paper to demonstrate our idea, and the test results show that it outperforms the Deep Learning approaches (i.e., deep fully connected neural networks and recurrent neural networks/Long Short-Term Memory networks).</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleExperience-Based Cognition for Driving Behavioral Fingerprint Extractionen
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2019.1705547en
local.contributor.firstnameHaoxien
local.contributor.firstnameFeien
local.contributor.firstnameJuanen
local.contributor.firstnameYangen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage103en
local.format.endpage114en
local.peerreviewedYesen
local.identifier.volume51en
local.identifier.issue2en
local.contributor.lastnameZhangen
local.contributor.lastnameLien
local.contributor.lastnameWangen
local.contributor.lastnameZhouen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61776en
local.date.onlineversion2020-01-20-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleExperience-Based Cognition for Driving Behavioral Fingerprint Extractionen
local.relation.fundingsourcenoteThis research was supported by Sichuan Science and Technology Program under the grant number 2019YFH0185.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorZhang, Haoxien
local.search.authorLi, Feien
local.search.authorWang, Juanen
local.search.authorZhou, Yangen
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2020en
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/246cc6b5-44dc-4d28-af79-2cb85178fe17en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.