Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61753
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShafiq, Syed Imranen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczebicki, Edwarden
dc.date.accessioned2024-07-22T23:40:07Z-
dc.date.available2024-07-22T23:40:07Z-
dc.date.issued2021-
dc.identifier.citationProcedia Computer Science, v.192, p. 3955-3965en
dc.identifier.issn1877-0509en
dc.identifier.urihttps://hdl.handle.net/1959.11/61753-
dc.description.abstract<p>Machine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) is applied to facilitate Machine Learning. For effective and efficient decision-making in Machine Learning, the environment's own experience is captured, stored and reused using the DDNA technique. The proposed approach is implemented on practical test cases like a Chatbot. Decisional DNA gathers explicit experiential knowledge based on formal decision events and uses this knowledge to support decision-making processes. The experimental test and results of the presented implementation of Decisional DNA Chatbot case studies support it as a technology that can improve and be applied to the technology, enhancing intelligence by predicting capabilities and facilitating knowledge engineering processes.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofProcedia Computer Scienceen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleIntegrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performanceen
dc.typeConference Publicationen
dc.relation.conferenceKES 2021: 25th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES) Conferenceen
dc.identifier.doi10.1016/j.procs.2021.09.170en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameSyed Imranen
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference8th to 10th of September, 2021en
local.conference.placePolanden
local.publisher.placeThe Netherlandsen
local.format.startpage3955en
local.format.endpage3965en
local.peerreviewedYesen
local.identifier.volume192en
local.access.fulltextYesen
local.contributor.lastnameShafiqen
local.contributor.lastnameSaninen
local.contributor.lastnameSzczebickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61753en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleIntegrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performanceen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsKES 2021: 25th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES) Conference, Poland, 8th to 10th of September, 2021en
local.search.authorShafiq, Syed Imranen
local.search.authorSanin, Cesaren
local.search.authorSzczebicki, Edwarden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/beffe422-4e8e-4850-a390-38dc31bdff85en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/beffe422-4e8e-4850-a390-38dc31bdff85en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/beffe422-4e8e-4850-a390-38dc31bdff85en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/IntegratingSanin2021ConferencePublication.pdfPublished version937.88 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons