Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSohail, Nosheenen
dc.contributor.authorAnwar, Syed Men
dc.contributor.authorMajeed, Farhaten
dc.contributor.authorSanin, Cesaren
dc.contributor.authorSzczerbicki, Edwarden
dc.date.accessioned2024-07-22T11:45:45Z-
dc.date.available2024-07-22T11:45:45Z-
dc.date.issued2021-07-
dc.identifier.citationCybernetics and Systems, 52(5), p. 445-460en
dc.identifier.issn1087-6553en
dc.identifier.issn0196-9722en
dc.identifier.urihttps://hdl.handle.net/1959.11/61751-
dc.description.abstract<p>Segmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on a smart, automated, and robust segmentation approach for brain tumor using a modified 3D U-Net architecture. The pre-operative multimodal 3D-MRI scans of High-Grade Glioma (HGG) and Low-Grade Glioma (LGG) are used as data. Our proposed approach solves the problem of memory and system resource constraints by robustly applying dense network training on image patches of 3D volumes. It improves the border region artifact detection by applying convolutions at an appropriate phase in the proposed neural network. Multi-class imbalance data are handled by using Categorical Cross Entropy (CCE) loss developed by combining the Weighted Cross Entropy (WCE) with Weighted Multi-class Dice Loss (WMDL) functions, which enables the network to perform smart segmentation of the smaller tumorous regions. The proposed approach is tested and evaluated for the challenge datasets of multimodal MRI volumes of tumor patients. Experiments are performed to compute the average dice scores on BraTS-2019 and BraTS-2020 datasets for the whole tumor region.</p>en
dc.languageenen
dc.publisherTaylor & Francis Incen
dc.relation.ispartofCybernetics and Systemsen
dc.titleSmart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)en
dc.typeJournal Articleen
dc.identifier.doi10.1080/01969722.2020.1871231en
local.contributor.firstnameNosheenen
local.contributor.firstnameSyed Men
local.contributor.firstnameFarhaten
local.contributor.firstnameCesaren
local.contributor.firstnameEdwarden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmaldon3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage445en
local.format.endpage460en
local.peerreviewedYesen
local.identifier.volume52en
local.identifier.issue5en
local.contributor.lastnameSohailen
local.contributor.lastnameAnwaren
local.contributor.lastnameMajeeden
local.contributor.lastnameSaninen
local.contributor.lastnameSzczerbickien
dc.identifier.staffune-id:cmaldon3en
local.profile.orcid0000-0001-8515-417Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61751en
local.date.onlineversion2021-01-22-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSmart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSohail, Nosheenen
local.search.authorAnwar, Syed Men
local.search.authorMajeed, Farhaten
local.search.authorSanin, Cesaren
local.search.authorSzczerbicki, Edwarden
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2021en
local.year.published2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/44c6c462-2343-49a8-946f-0139d5bb9e20en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 23, 2024

Page view(s)

174
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.