Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61750
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmed, Muhammad Bilal | en |
dc.contributor.author | Majeed, Farhat | en |
dc.contributor.author | Sanin, Cesar | en |
dc.contributor.author | Szczerbicki, Edward | en |
dc.date.accessioned | 2024-07-22T11:29:29Z | - |
dc.date.available | 2024-07-22T11:29:29Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Cybernetics and Systems, 52(5), p. 296-312 | en |
dc.identifier.issn | 1087-6553 | en |
dc.identifier.issn | 0196-9722 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61750 | - |
dc.description.abstract | <p>In this paper we describe how our Smart Virtual Product Development (SVPD) system can be used to enhance product inspection planning. The SVPD system is comprised of three main modules, these being the design knowledge management (DKM) module, the manufacturing capability and process planning (MCAPP) module, and the product inspection planning (PIP) module. Experiential knowledge relating to formal decisional events is collected, stored and used by the system in the form of set of experiences (SOEs). Here we discuss the working mechanism of the PIP module and show how experiential knowledge relating to the inspection of products that have features and functions in common can be used to enhance product inspection planning during early stages of product development. Our discussion commences with an introduction to fundamental concepts and a general system overview. We then describe the development of our SVPD system’s PIP module, and a case study we undertook for validation purposes. Results of the case study show that our system is capable of supporting product inspection planning in smart manufacturing, and thus has a vital role to play in Industry 4.0.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis Inc | en |
dc.relation.ispartof | Cybernetics and Systems | en |
dc.title | Experience-Based Product Inspection Planning for Industry 4.0 | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01969722.2020.1871222 | en |
local.contributor.firstname | Muhammad Bilal | en |
local.contributor.firstname | Farhat | en |
local.contributor.firstname | Cesar | en |
local.contributor.firstname | Edward | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cmaldon3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 296 | en |
local.format.endpage | 312 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 52 | en |
local.identifier.issue | 5 | en |
local.contributor.lastname | Ahmed | en |
local.contributor.lastname | Majeed | en |
local.contributor.lastname | Sanin | en |
local.contributor.lastname | Szczerbicki | en |
dc.identifier.staff | une-id:cmaldon3 | en |
local.profile.orcid | 0000-0001-8515-417X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61750 | en |
local.date.onlineversion | 2021-01-28 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Experience-Based Product Inspection Planning for Industry 4.0 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ahmed, Muhammad Bilal | en |
local.search.author | Majeed, Farhat | en |
local.search.author | Sanin, Cesar | en |
local.search.author | Szczerbicki, Edward | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/7ddc269e-3b1f-4742-8d4a-f2df3f98f021 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-30 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
9
checked on Nov 23, 2024
Page view(s)
188
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.