Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61470
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Muller, Marius B | en |
dc.contributor.author | Adam, Marc T P | en |
dc.contributor.author | Cornforth, David J | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Kramer, Jan | en |
dc.contributor.author | Weinhardt, Christof | en |
dc.date.accessioned | 2024-07-10T01:06:31Z | - |
dc.date.available | 2024-07-10T01:06:31Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Proceedings of the Annual Hawaii International Conference on System Sciences, p. 396-405 | en |
dc.identifier.isbn | 9780769556703 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61470 | - |
dc.description.abstract | <p>Affective processes play an important role in determining human behavior in auctions. While previous research has shown that physiological measurements provide insights into these processes, it remains unclear which of the many features that can be computed from physiological data are particularly useful in predicting human behavior. Identifying these features is important for gaining a better understanding of affective processes in electronic auctions and for building biofeedback systems. In this study, we propose a new approach to identify physiological features for predicting auction behavior. We apply an Evolutionary Algorithm in combination with either the Multiple Linear Regression or Artificial Neural Network models to select physiological features and assess their predictive power. To test the approach, we use a unique dataset of participants' auction decisions and their synchronously recorded electrocardiography data. Our results show that the approach is able to identify subsets of physiological features that consistently outperform other physiological features.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | Proceedings of the Annual Hawaii International Conference on System Sciences | en |
dc.title | Selecting physiological features for predicting bidding behavior in electronic auctions | en |
dc.type | Conference Publication | en |
dc.relation.conference | HICSS 2016: 49th Hawaii International Conference on System Sciences (HICSS) | en |
dc.identifier.doi | 10.1109/HICSS.2016.55 | en |
local.contributor.firstname | Marius B | en |
local.contributor.firstname | Marc T P | en |
local.contributor.firstname | David J | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Jan | en |
local.contributor.firstname | Christof | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 5th - 8th January, 2016 | en |
local.conference.place | Koloa, HI, USA | en |
local.publisher.place | United States of America | en |
local.format.startpage | 396 | en |
local.format.endpage | 405 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Muller | en |
local.contributor.lastname | Adam | en |
local.contributor.lastname | Cornforth | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Kramer | en |
local.contributor.lastname | Weinhardt | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61470 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Selecting physiological features for predicting bidding behavior in electronic auctions | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | HICSS 2016: 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5th - 8th January, 2016 | en |
local.search.author | Muller, Marius B | en |
local.search.author | Adam, Marc T P | en |
local.search.author | Cornforth, David J | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Kramer, Jan | en |
local.search.author | Weinhardt, Christof | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2016 | en |
local.year.presented | 2016 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-29 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
4
checked on Oct 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.