Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuller, Marius Ben
dc.contributor.authorAdam, Marc T Pen
dc.contributor.authorCornforth, David Jen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorKramer, Janen
dc.contributor.authorWeinhardt, Christofen
dc.date.accessioned2024-07-10T01:06:31Z-
dc.date.available2024-07-10T01:06:31Z-
dc.date.issued2016-
dc.identifier.citationProceedings of the Annual Hawaii International Conference on System Sciences, p. 396-405en
dc.identifier.isbn9780769556703en
dc.identifier.urihttps://hdl.handle.net/1959.11/61470-
dc.description.abstract<p>Affective processes play an important role in determining human behavior in auctions. While previous research has shown that physiological measurements provide insights into these processes, it remains unclear which of the many features that can be computed from physiological data are particularly useful in predicting human behavior. Identifying these features is important for gaining a better understanding of affective processes in electronic auctions and for building biofeedback systems. In this study, we propose a new approach to identify physiological features for predicting auction behavior. We apply an Evolutionary Algorithm in combination with either the Multiple Linear Regression or Artificial Neural Network models to select physiological features and assess their predictive power. To test the approach, we use a unique dataset of participants' auction decisions and their synchronously recorded electrocardiography data. Our results show that the approach is able to identify subsets of physiological features that consistently outperform other physiological features.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings of the Annual Hawaii International Conference on System Sciencesen
dc.titleSelecting physiological features for predicting bidding behavior in electronic auctionsen
dc.typeConference Publicationen
dc.relation.conferenceHICSS 2016: 49th Hawaii International Conference on System Sciences (HICSS)en
dc.identifier.doi10.1109/HICSS.2016.55en
local.contributor.firstnameMarius Ben
local.contributor.firstnameMarc T Pen
local.contributor.firstnameDavid Jen
local.contributor.firstnameRaymonden
local.contributor.firstnameJanen
local.contributor.firstnameChristofen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference5th - 8th January, 2016en
local.conference.placeKoloa, HI, USAen
local.publisher.placeUnited States of Americaen
local.format.startpage396en
local.format.endpage405en
local.peerreviewedYesen
local.contributor.lastnameMulleren
local.contributor.lastnameAdamen
local.contributor.lastnameCornforthen
local.contributor.lastnameChiongen
local.contributor.lastnameKrameren
local.contributor.lastnameWeinhardten
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61470en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSelecting physiological features for predicting bidding behavior in electronic auctionsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsHICSS 2016: 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5th - 8th January, 2016en
local.search.authorMuller, Marius Ben
local.search.authorAdam, Marc T Pen
local.search.authorCornforth, David Jen
local.search.authorChiong, Raymonden
local.search.authorKramer, Janen
local.search.authorWeinhardt, Christofen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.year.presented2016en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-29en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.