Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorFan, Zongwenen
dc.contributor.authorLin, Yuqingen
dc.contributor.authorChalup, Stefanen
dc.contributor.authorDesmet, Antoineen
local.source.editorEditor(s): Tao Song, Pan Zheng, Mou Ling Dennis Wong and Xun Wangen
dc.date.accessioned2024-07-10T01:02:36Z-
dc.date.available2024-07-10T01:02:36Z-
dc.date.issued2019-
dc.identifier.citationBio-Inspired Computing Models and Algorithms, p. 133-155en
dc.identifier.isbn9789813143180en
dc.identifier.urihttps://hdl.handle.net/1959.11/61418-
dc.description.abstract<p>Being able to detect anomalies for predicting machine breakdown is of critical importance in the mining industry. These anomalies are usually found in unlabelled sensor data, and therefore unsupervised models represent the preferred choice for the task. In this chapter, we propose the use of a bio-inspired clustering model based on the self-organizing map (SOM) to detect anomalies in real-world data provided by Joy Global, a manufacturer of high-productivity mining solutions. The proposed SOM is compared to two other well-known clustering models, namely <i>k</i>-means and fuzzy <i>c</i>-means. Simulation experiments using grease cycle data from the manufacturer show that the SOM is able to detect a more reasonable number of anomalies than <i>k</i>-means and fuzzy <i>c</i>-means. Based on real scenarios given by Joy Global, we devise a simple way to prevent machine failures by triggering alarms through the anomalies detected, and the SOM is again shown to be more capable of identifying incidents of potential machine breakdown compared to the other two clustering models.</p>en
dc.languageenen
dc.publisherWorld Scientific Publishing Co Pte Ltden
dc.relation.ispartofBio-Inspired Computing Models and Algorithmsen
dc.titleA Bio-inspired Clustering Model for Anomaly Detection in the Mining Industryen
dc.typeBook Chapteren
dc.identifier.doi10.1142/9789813143180_0005en
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameZongwenen
local.contributor.firstnameYuqingen
local.contributor.firstnameStefanen
local.contributor.firstnameAntoineen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.identifier.totalchapters10en
local.format.startpage133en
local.format.endpage155en
local.peerreviewedYesen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnameFanen
local.contributor.lastnameLinen
local.contributor.lastnameChalupen
local.contributor.lastnameDesmeten
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61418en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Bio-inspired Clustering Model for Anomaly Detection in the Mining Industryen
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorFan, Zongwenen
local.search.authorLin, Yuqingen
local.search.authorChalup, Stefanen
local.search.authorDesmet, Antoineen
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.year.presented2019en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-27en
Appears in Collections:Book Chapter
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.