Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning

Title
Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning
Publication Date
2021-08
Author(s)
Li, Xinyu
Chiong, Raymond
( author )
OrcID: https://orcid.org/0000-0002-8285-1903
Email: rchiong@une.edu.au
UNE Id une-id:rchiong
Hu, Zhongyi
Page, Alister J
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
American Chemical Society
Place of publication
United States of America
DOI
10.1021/acs.jpclett.1c01851
UNE publication id
une:1959.11/61390
Abstract

Pt is a key high-performing catalyst for important chemical conversions, such as biomass conversion and water splitting. Limited Pt reserves, however, demand that we identify more sustainable alternative catalyst materials for these processes. Here, we combine state-ofthe-art graph neural networks and crystal graph machine learning representations with active learning to discover new, low-cost Pt alloy catalysts for biomass reforming and hydrogen evolution reactions. We identify 12 Pt-based alloys which have comparable catalytic activity to that of the exemplar Pt(111) surface. Notably, Cu3Pt and FeCuPt2 exhibit near identical catalytic performance as that of Pt(111). These results demonstrate the potential of machine learning for predicting new catalytic materials without recourse to expensive DFT geometry optimizations, the current bottleneck impeding high-throughput materials discovery. We also examine the performance of d-band theory in elucidating trends in binary and ternary Pt alloys.

Link
Citation
Journal of Physical Chemistry Letters, 12(30), p. 7305-7311
ISSN
1948-7185
Start page
7305
End page
7311

Files:

NameSizeformatDescriptionLink