Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61360
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fan, Zongwen | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Keivanian, Farshid | en |
dc.contributor.author | Chiong, Fabian | en |
dc.date.accessioned | 2024-07-10T00:59:32Z | - |
dc.date.available | 2024-07-10T00:59:32Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | PLoS One, 17(2), p. 1-24 | en |
dc.identifier.issn | 1932-6203 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61360 | - |
dc.description.abstract | <p>Obesity, associated with having excess body fat, is a critical public health problem that can cause serious diseases. Although a range of techniques for body fat estimation have been developed to assess obesity, these typically involve high-cost tests requiring special equipment. Thus, the accurate prediction of body fat percentage based on easily accessed body measurements is important for assessing obesity and its related diseases. By considering the characteristics of different features (e.g. body measurements), this study investigates the effectiveness of feature extraction for body fat prediction. It evaluates the performance of three feature extraction approaches by comparing four well-known prediction models. Experimental results based on two real-world body fat datasets show that the prediction models perform better on incorporating feature extraction for body fat prediction, in terms of the mean absolute error, standard deviation, root mean square error and robustness. These results confirm that feature extraction is an effective pre-processing step for predicting body fat. In addition, statistical analysis confirms that feature extraction significantly improves the performance of prediction methods. Moreover, the increase in the number of extracted features results in further, albeit slight, improvements to the prediction models. The findings of this study provide a baseline for future research in related areas.</p> | en |
dc.language | en | en |
dc.publisher | Public Library of Science | en |
dc.relation.ispartof | PLoS One | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Body fat prediction through feature extraction based on anthropometric and laboratory measurements | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1371/journal.pone.0263333 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Zongwen | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Farshid | en |
local.contributor.firstname | Fabian | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1 | en |
local.format.endpage | 24 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 17 | en |
local.identifier.issue | 2 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Fan | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Keivanian | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61360 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Body fat prediction through feature extraction based on anthropometric and laboratory measurements | en |
local.relation.fundingsourcenote | This research was supported by the Australian Government Research Training Program through PhD scholarships awarded to ZF and FK. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Fan, Zongwen | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Keivanian, Farshid | en |
local.search.author | Chiong, Fabian | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9f | en |
local.uneassociation | No | en |
dc.date.presented | 2022 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2022 | en |
local.year.presented | 2022 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9f | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9f | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-22 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/BodyChiong2022JournalArticle.pdf | Published version | 2.61 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
7
checked on Oct 26, 2024
This item is licensed under a Creative Commons License