Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61360
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Zongwenen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorKeivanian, Farshiden
dc.contributor.authorChiong, Fabianen
dc.date.accessioned2024-07-10T00:59:32Z-
dc.date.available2024-07-10T00:59:32Z-
dc.date.issued2022-
dc.identifier.citationPLoS One, 17(2), p. 1-24en
dc.identifier.issn1932-6203en
dc.identifier.urihttps://hdl.handle.net/1959.11/61360-
dc.description.abstract<p>Obesity, associated with having excess body fat, is a critical public health problem that can cause serious diseases. Although a range of techniques for body fat estimation have been developed to assess obesity, these typically involve high-cost tests requiring special equipment. Thus, the accurate prediction of body fat percentage based on easily accessed body measurements is important for assessing obesity and its related diseases. By considering the characteristics of different features (e.g. body measurements), this study investigates the effectiveness of feature extraction for body fat prediction. It evaluates the performance of three feature extraction approaches by comparing four well-known prediction models. Experimental results based on two real-world body fat datasets show that the prediction models perform better on incorporating feature extraction for body fat prediction, in terms of the mean absolute error, standard deviation, root mean square error and robustness. These results confirm that feature extraction is an effective pre-processing step for predicting body fat. In addition, statistical analysis confirms that feature extraction significantly improves the performance of prediction methods. Moreover, the increase in the number of extracted features results in further, albeit slight, improvements to the prediction models. The findings of this study provide a baseline for future research in related areas.</p>en
dc.languageenen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPLoS Oneen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleBody fat prediction through feature extraction based on anthropometric and laboratory measurementsen
dc.typeJournal Articleen
dc.identifier.doi10.1371/journal.pone.0263333en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameZongwenen
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameFarshiden
local.contributor.firstnameFabianen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage24en
local.peerreviewedYesen
local.identifier.volume17en
local.identifier.issue2en
local.access.fulltextYesen
local.contributor.lastnameFanen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnameKeivanianen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61360en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleBody fat prediction through feature extraction based on anthropometric and laboratory measurementsen
local.relation.fundingsourcenoteThis research was supported by the Australian Government Research Training Program through PhD scholarships awarded to ZF and FK.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorFan, Zongwenen
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorKeivanian, Farshiden
local.search.authorChiong, Fabianen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9fen
local.uneassociationNoen
dc.date.presented2022-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.year.presented2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9fen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/be47b110-24a5-41f8-b386-cf8a6dddae9fen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/BodyChiong2022JournalArticle.pdfPublished version2.61 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons