Thrifty females, frisky males: winter energetics of hibernating bats from a cold climate

Title
Thrifty females, frisky males: winter energetics of hibernating bats from a cold climate
Publication Date
2017
Author(s)
Czenze, Zenon J
( author )
OrcID: https://orcid.org/0000-0002-1113-7593
Email: zczenze@une.edu.au
UNE Id une-id:zczenze
Jonasson, Kristin A
Willis, Craig K R
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
University of Chicago Press
Place of publication
United States of America
DOI
10.1086/692623
UNE publication id
une:1959.11/61269
Abstract

Mammalian hibernation consists of energy-saving torpor bouts (periods of controlled reduction in body temperature [Tb]) interspersed with brief arousals to normothermic Tb. Frequency and duration of torpor bouts and arousals can affect winter survival and are thought to be influenced by an optimization balancing the energetic benefits of prolonged torpor against the physiological and ecological costs (e.g., accumulation of metabolic wastes). Female little brown bats (Myotis lucifugus) spend their fat reserves more slowly than males during winter, presumably so they can emerge from hibernation in good condition to initiate pregnancy. We used temperature telemetry over three winters to test a prediction of the optimization hypothesis that female M. lucifugus would use longer torpor bouts and/or shorter arousals than males. Females did conserve energy relative to males by adjusting the magnitude and duration of arousals but not the duration of torpor bouts. Although torpor bout duration did not vary by sex for adults, it did vary by age. Adults initially used longer torpor bouts than young-of-the-year, but this difference declined as cave temperature warmed in spring. Males and females in better condition spent more energy during hibernation, again via increased arousal duration rather than decreased torpor bout duration. Longer arousals by males could increase reproductive fitness if males mate with torpid females throughout winter. Our results highlight demographic differences in winter behavior for small hibernators facing extreme energy limitation in cold climates and illustrate the influence that reproductive costs have on hibernation energetics.

Link
Citation
Physiological and Biochemical Zoology, 90(4), p. 502-511
ISSN
1537-5293
1522-2152
Start page
502
End page
511

Files:

NameSizeformatDescriptionLink