Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61215
Title: Real-time metabolic profiling of oesophageal tumours reveals an altered metabolic phenotype to different oxygen tensions and to treatment with Pyrazinib
Contributor(s): Buckley, Amy M  (author)orcid ; Dunne, Margaret R (author); Morrissey, Maria E (author); Kennedy, Susan A (author); Nolan, Aoife (author); Davern, Maria (author); Foley, Emma K (author); Clarke, Niamh (author); Lysaght, Joanne (author); Ravi, Narayanasamy (author); O’Toole, Dermot (author); MacCarthy, Finbar (author); Reynolds, John V (author); Kennedy, Breandán N (author); O’Sullivan, Jacintha (author)
Publication Date: 2020
Early Online Version: 2020
Open Access: Yes
DOI: 10.1038/s41598-020-68777-7
Handle Link: https://hdl.handle.net/1959.11/61215
Abstract: 

Oesophageal cancer is the 6th most common cause of cancer related death worldwide. The current standard of care for oesophageal adenocarcinoma (OAC) focuses on neoadjuvant therapy with chemoradiation or chemotherapy, however the 5-year survival rates remain at< 20%. To improve treatment outcomes it is critical to further investigate OAC tumour biology, metabolic phenotype and their metabolic adaptation to different oxygen tensions. In this study, by using human ex-vivo explants we demonstrated using real-time metabolic profiling that OAC tumour biopsies have a significantly higher oxygen consumption rate (OCR), a measure of oxidative phosphorylation compared to extracellular acidification rate (ECAR), a measure of glycolysis (p= 0.0004). Previously, we identified a small molecule compound, pyrazinib which enhanced radiosensitivity in OAC. Pyrazinib significantly inhibited OCR in OAC treatment-naïve biopsies (p= 0.0139). Furthermore, OAC biopsies can significantly adapt their metabolic rate in real-time to their environment. Under hypoxic conditions pyrazinib produced a significant reduction in both OCR (p= 0.0313) and ECAR in OAC treatment-naïve biopsies. The inflammatory secretome profile from OAC treatment-naïve biopsies is heterogeneous. OCR was positively correlated with three secreted factors in the tumour conditioned media: vascular endothelial factor A (VEGF-A), IL-1RA and thymic stromal lymphopoietin (TSLP). Pyrazinib significantly inhibited IL-1β secretion (p= 0.0377) and increased IL-3 (p= 0.0020) and IL-17B (p= 0.0181). Importantly, pyrazinib did not directly alter the expression of dendritic cell maturation markers or reduce T-cell viability or activation markers. We present a new method for profiling the metabolic rate of tumour biopsies in real-time and demonstrate the novel anti-metabolic and anti-inflammatory action of pyrazinib ex-vivo in OAC tumours, supporting previous findings in-vitro whereby pyrazinib significantly enhanced radiosensitivity in OAC.

Publication Type: Journal Article
Source of Publication: Scientific Reports, v.10, p. 1-16
Publisher: Nature Publishing Group
Place of Publication: United Kingdom
ISSN: 2045-2322
Fields of Research (FoR) 2020: 3211 Oncology and carcinogenesis
Socio-Economic Objective (SEO) 2020: tbd
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Health

Files in This Item:
2 files
File Description SizeFormat 
openpublished/Real-timeBuckley2020JournalArticle.pdfPublished version2.5 MBAdobe PDF
Download Adobe
View/Open
Show full item record

SCOPUSTM   
Citations

6
checked on Jan 4, 2025

Page view(s)

194
checked on Aug 11, 2024

Download(s)

8
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons