Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/60858
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSong, Eugineen
dc.contributor.authorOh, Mia Sen
dc.contributor.authorBillard, Lynneen
dc.contributor.authorMoss, Amyen
dc.contributor.authorPesti, Gene Men
dc.date.accessioned2024-06-21T05:04:51Z-
dc.date.available2024-06-21T05:04:51Z-
dc.date.issued2022-09-
dc.identifier.citationPoultry Science, 101(9), p. 1-11en
dc.identifier.issn1525-3171en
dc.identifier.issn0032-5791en
dc.identifier.urihttps://hdl.handle.net/1959.11/60858-
dc.description.abstract<p>As the cost of research increases, mathematical models become valuable tools to answer research questions. A major application of mathematical modeling is accurate estimation of production performance, growth, and feed consumption for poultry research and production. There are many ways that a given data set can be analyzed, and different models have been proposed to fit those curves. To explore the models available, data were investigated from a study on the effects of a series of balanced dietary protein levels on egg production and egg quality parameters in lying hens from 18 to 74 wk of age. Forty eight pullets were assigned to each of 3 different protein levels. The results clearly demonstrated that balanced dietary protein level was the limiting factor for body weight (<b>BW</b>), average daily feed intake (<b>ADFI</b>), egg weight, and egg production. To test differences of fitted curves, the sum of squared reduction test is used. Using a unique data set with data from individual hens, 6 commonly used models were fitted to hen performance technical data. The resulting statistical inferences from using individual and pooled data were compared. There are only differences in using individual or grouped data in fitting nonlinear models to laying hen response data. For the most important response variables, hen-day egg production, and feed intake, predicted responses are within 0.12 and 0.65%, respectively, throughout the production cycle.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofPoultry Scienceen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA statistical analysis of nonlinear regression models for different treatments for layersen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.psj.2022.102004en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameEugineen
local.contributor.firstnameMia Sen
local.contributor.firstnameLynneen
local.contributor.firstnameAmyen
local.contributor.firstnameGene Men
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailamoss22@une.edu.auen
local.profile.emailgpesti2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber102004en
local.format.startpage1en
local.format.endpage11en
local.peerreviewedYesen
local.identifier.volume101en
local.identifier.issue9en
local.access.fulltextYesen
local.contributor.lastnameSongen
local.contributor.lastnameOhen
local.contributor.lastnameBillarden
local.contributor.lastnameMossen
local.contributor.lastnamePestien
dc.identifier.staffune-id:amoss22en
dc.identifier.staffune-id:gpesti2en
local.profile.orcid0000-0002-8647-8448en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.rolecreatoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/60858en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
local.title.maintitleA statistical analysis of nonlinear regression models for different treatments for layersen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSong, Eugineen
local.search.authorOh, Mia Sen
local.search.authorBillard, Lynneen
local.search.authorMoss, Amyen
local.search.authorPesti, Gene Men
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/de804939-83df-4ee9-ac3e-1997d871e4dfen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/de804939-83df-4ee9-ac3e-1997d871e4dfen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/de804939-83df-4ee9-ac3e-1997d871e4dfen
local.subject.for2020300303 Animal nutritionen
local.subject.seo2020100411 Poultryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-06-21en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AStatisticalMossPesti2022JournalArticle.pdfPublished version1.12 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons