Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/60842
Title: Effects of dietary energy density and supplemental rumen undegradable protein on intake, viscera, and carcass composition of lambs recovering from nutritional restriction
Contributor(s): Dougherty, Holland C  (author)orcid ; Evered, Mark  (author); Oltjen, James W (author); Hegarty, Roger S  (author); Neutze, Stephen A (author); Oddy, V Hutton  (author)orcid 
Publication Date: 2022-07
Early Online Version: 2022-05-03
Open Access: Yes
DOI: 10.1093/jas/skac158
Handle Link: https://hdl.handle.net/1959.11/60842
Abstract: 

Variation in nutrition is a key determinant of growth, body composition, and the ability of animals to perform to their genetic potential. Depending on the quality of feed available, animals may be able to overcome negative effects of prior nutritional restriction, increasing intake and rates of tissue gain, but full compensation may not occur. A 2 × 3 × 4 factorial serial slaughter study was conducted to examine the effects of prior nutritional restriction, dietary energy density, and supplemental rumen undegradable protein (RUP) on intake, growth, and body composition of lambs. After an initial slaughter (n = 8), 124 4-mo-old Merino cross wethers (28.4 ± 1.8 kg) were assigned to either restricted (LO, 500 g/d) or unrestricted (HI, 1500 g/d) intake of lucerne and oat pellets. After 8 wk, eight lambs/group were slaughtered and tissue weights and chemical composition were measured. Remaining lambs were randomly assigned to a factorial combination of dietary energy density (7.8, 9.2, and 10.7 MJ/kg DM) and supplemental RUP (0, 30, 60, and 90 g/d) and fed ad libitum for a 12- to 13-wk experimental period before slaughter and analysis. By week 3 of the experimental period, lambs fed the same level of energy had similar DMI (g/d) and MEI (MJ/d) (P > 0.05), regardless of prior level of nutrition. Restricted-refed (LO) lambs had higher rates of fat and protein gain than HI lambs (P < 0.05) but had similar visceral masses (P > 0.05). However, LO lambs were lighter and leaner at slaughter, with proportionally larger rumens and livers (P < 0.05). Tissue masses increased with increasing dietary energy density, as did DMI, energy and nitrogen (N) retention (% intake), and rates of protein and fat gain (P < 0.05). The liver increased proportionally with increasing dietary energy density and RUP (P < 0.05), but rumen size decreased relative to the empty body as dietary energy density increased (P < 0.05) and did not respond to RUP (P > 0.05). Fat deposition was greatest in lambs fed 60 g/d supplemental RUP (P < 0.05). However, lambs fed 90 g/d were as lean as lambs that did not receive supplement (P0, P > 0.05), with poorer nitrogen retention and proportionally heavier livers than P0 lambs (P < 0.05). In general, visceral protein was the first tissue to respond to increased intake during refeeding, followed by non-visceral protein and fat, highlighting the influence of differences in tissue response over time on animal performance and body composition.

Publication Type: Journal Article
Source of Publication: Journal of Animal Science, 100(7), p. 1-16
Publisher: Oxford University Press
Place of Publication: United States of America
ISSN: 1525-3163
0021-8812
Fields of Research (FoR) 2020: 3002 Agriculture, land and farm management
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
openpublished/EffectsDoughertyEveredHegartyOddy2022JournalArticle.pdfPublished Version1.71 MBAdobe PDF
Download Adobe
View/Open
Show full item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons