Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/60284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRoss, Elizabeth Men
dc.contributor.authorHayes, Ben Jen
dc.contributor.authorTucker, Daviden
dc.contributor.authorBond, Judeen
dc.contributor.authorDenman, Stuart Een
dc.contributor.authorOddy, Victor Huttonen
dc.date.accessioned2024-05-30T08:13:36Z-
dc.date.available2024-05-30T08:13:36Z-
dc.date.issued2020-10-
dc.identifier.citationJournal of Animal Science, 98(10), p. 1-14en
dc.identifier.issn1525-3163en
dc.identifier.issn0021-8812en
dc.identifier.urihttps://hdl.handle.net/1959.11/60284-
dc.description.abstract<p>Methane production from rumen methanogenesis contributes approximately 71% of greenhouse gas emissions from the agricultural sector. This study has performed genomic predictions for methane production from 99 sheep across 3 yr using a residual methane phenotype that is log methane yield corrected for live weight, rumen volume, and feed intake. Using genomic relationships, the prediction accuracies (as determined by the correlation between predicted and observed residual methane production) ranged from 0.058 to 0.220 depending on the time point being predicted. The best linear unbiased prediction algorithm was then applied to relationships between animals that were built on the rumen metabolome and microbiome. Prediction accuracies for the metabolome-based relationships for the two available time points were 0.254 and 0.132; the prediction accuracy for the first microbiome time point was 0.142. The second microbiome time point could not successfully predict residual methane production. When the metabolomic relationships were added to the genomic relationships, the accuracy of predictions increased to 0.274 (from 0.201 when only the genomic relationship was used) and 0.158 (from 0.081 when only the genomic relationship was used) for the two time points, respectively. When the microbiome relationships from the first time point were added to the genomic relationships, the maximum prediction accuracy increased to 0.247 (from 0.216 when only the genomic relationship was used), which was achieved by giving the genomic relationships 10 times more weighting than the microbiome relationships. These accuracies were higher than the genomic, metabolomic, and microbiome relationship matrixes achieved alone when identical sets of animals were used.</p>en
dc.languageenen
dc.publisherAmerican Society of Animal Scienceen
dc.relation.ispartofJournal of Animal Scienceen
dc.titleGenomic predictions for enteric methane production are improved by metabolome and microbiome data in sheep (Ovis aries)en
dc.typeJournal Articleen
dc.identifier.doi10.1093/jas/skaa262en
dc.identifier.pmid32815548en
dc.subject.keywordspredictionen
dc.subject.keywordsAgricultureen
dc.subject.keywordsmetabolomeen
dc.subject.keywordsmethaneen
dc.subject.keywordsmicrobiomeen
dc.subject.keywordsAgriculture, Dairy & Animal Scienceen
local.contributor.firstnameElizabeth Men
local.contributor.firstnameBen Jen
local.contributor.firstnameDaviden
local.contributor.firstnameJudeen
local.contributor.firstnameStuart Een
local.contributor.firstnameVictor Huttonen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emaildtucker1@une.edu.auen
local.profile.emailhoddy2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Statesen
local.format.startpage1en
local.format.endpage14en
local.peerreviewedYesen
local.identifier.volume98en
local.identifier.issue10en
local.contributor.lastnameRossen
local.contributor.lastnameHayesen
local.contributor.lastnameTuckeren
local.contributor.lastnameBonden
local.contributor.lastnameDenmanen
local.contributor.lastnameOddyen
dc.identifier.staffune-id:dtucker1en
dc.identifier.staffune-id:hoddy2en
local.profile.orcid0000-0003-1783-1049en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/60284en
local.date.onlineversion2020-08-20-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGenomic predictions for enteric methane production are improved by metabolome and microbiome data in sheep (Ovis aries)en
local.relation.fundingsourcenoteMeat and Livestock Australia Limited Projects B.CCH.2071" B.CCH.7620. Commonwealth of Australia, Department of Agriculture, Fisheries and Forestry (Project 1193857-31) and the Australian Government, Carbon Farming Futures, Filling the Research Gap Program (Project—"Host control of methane emissions from sheep") administered through the Rumen PanGenome Program at the University of Western Australia.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorRoss, Elizabeth Men
local.search.authorHayes, Ben Jen
local.search.authorTucker, Daviden
local.search.authorBond, Judeen
local.search.authorDenman, Stuart Een
local.search.authorOddy, Victor Huttonen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2020en
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ce2b2cc4-ca35-480a-a01b-375753f292a1en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020TBDen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 14, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.