Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/5982
Title: | Determining the Optimal Spatial Resolution of Remotely Sensed Data for the Detection of Sirex Noctilio Infestations in Pine Plantations in Kwazulu-Natal, South Africa | Contributor(s): | Ismail, Riyad (author); Mutanga, Onnie (author); Kumar, Lalit (author) ; Bob, Urmila (author) | Publication Date: | 2008 | Handle Link: | https://hdl.handle.net/1959.11/5982 | Abstract: | Sirex noctilio is causing considerable mortality in commercial pine plantations in KwaZulu-Natal, South Africa. The ability to remotely detect variable (for example, low, medium and high) S.noctilio infestation levels remains crucial for monitoring of the actual spread of the disease and for the effective deployment of suppression activities. Although high resolution image data can detect and monitor S.noctilio infestations there are no guidelines to the appropriate spatial resolutions that are suitable for detection and monitoring purposes. This study examines the use of minimum variance to analyze S.noctilio infestations in an effort to determine an optimal spatial resolution of remotely sensed data for forest health monitoring purposes. High resolution (0.5 m) image data was collected using a four band airborne sensor and infestation levels were derived using the normalized difference vegetation index (NDVI) and Gaussian maximum likelihood classifier. It was determined that the appropriate spatial resolution for the detection and monitoring of S.noctilio infestations as estimated by the minimum variance of sub samples narrowly differed based on the level of localized infestations present in the study area. Pixel sizes larger than 2.3 m will not provide adequate information for high infestation levels, while using pixel sizes smaller than the 1.75 m for detecting low to medium infestation levels will yield inappropriate results. The results of this study establish the necessary spatial resolution guidelines needed for the operational detection and monitoring of S.noctilio. | Publication Type: | Journal Article | Source of Publication: | South African Geographical Journal, 90(1), p. 196-204 | Publisher: | Routledge | Place of Publication: | United Kingdom | ISSN: | 2151-2418 0373-6245 |
Fields of Research (FoR) 2008: | 090905 Photogrammetry and Remote Sensing 090903 Geospatial Information Systems 050205 Environmental Management |
Socio-Economic Objective (SEO) 2008: | 960404 Control of Animal Pests, Diseases and Exotic Species in Forest and Woodlands Environments 960505 Ecosystem Assessment and Management of Forest and Woodlands Environments |
Peer Reviewed: | Yes | HERDC Category Description: | C1 Refereed Article in a Scholarly Journal | Publisher/associated links: | http://www.sabinet.co.za/abstracts/sageo/sageo_v90_n1_a3.html |
---|---|
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
950
checked on Mar 7, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.