Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59676
Title: Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter
Contributor(s): Agyarko-mintah, Eunice  (author); Cowie, Annette  (author); Singh, Bhupinderpal Pal  (author); Joseph, Stephen  (author); Van Zwieten, Lukas  (author); Cowie, Alan (author); Harden, Steven (author); Smillie, Robert  (author)
Publication Date: 2017-03
DOI: 10.1016/j.wasman.2016.11.027
Handle Link: https://hdl.handle.net/1959.11/59676
Abstract: 

Biochar has intrinsic and nascent structural and sorption properties that may alter the physical and chemical properties of a composting mixture thus influencing the production of greenhouse gases [GHGs" nitrous oxide (N2O) and methane (CH4)]. In this study, contrasting biochars produced from green-waste (GWB) or poultry litter (PLB) were incorporated into a composting mixture containing poultry litter and straw, and GHG emissions were measured in situ during composting using Fourier Transform Infrared Spectroscopy (FTIR). Emissions of N2O from the biochar-amended composting mixtures decreased significantly (P < 0.05) soon after commencement of the composting process compared with the non-amended control. The cumulative emissions of N2O over 8 weeks in the GWB composting mixture (GWBC), PLB composting mixture (PLBC) and control (no biochar) were 4.2, 5.0 and 14.0 g N2O-N kg−1 of total nitrogen (TN) in composting mixture, respectively (P < 0.05). The CH4 emissions were significantly (P < 0.05) lower in the GWBC and PLBC treatments than the control during the period from day 8 to day 36, when anaerobic conditions likely prevailed. The cumulative CH4 emissions were 12, 18 and 80 mg CH4-C kg−1 of total carbon (TC) for the GWBC, PLBC and control treatments, respectively, though due to wide variation between replicates this difference was not statistically significant. The cumulative N2O and CH4 emissions were similar between the GWBC and PLBC despite differences in properties of the two biochars. X-ray Photoelectron Spectroscopy (XPS) analysis and SEM imaging of the composted biochars indicated the presence of iron oxide compounds and amine-NH3 on the surface and pores of the biochars (PLB > GWB). The change in nitrogen (N) functional groups on the biochar surface after composting is evidence for sorption and/or reaction with N from labile organic N, mineral N, and gaseous N (e.g. N2O). The concentration of NH4+ increased during the thermophilic phase and then decreased during the maturation phase, while NO3− accumulated during the maturation phase. Total N retained was significantly (P < 0.05) higher in the PLBC (740 g) and the GWBC (660 g) relative to the control (530 g). The TC retained was significantly higher in the GWBC (10.0 kg) and the PLBC (8.5 kg) cf. the control (6.0 kg). Total GHG emissions across the composting period were 50, 63 and 183 kg CO2-eq t−1 of initial mass of GWBC, PLBC and control (dry weight basis) respectively. These results support the co-composting of biochar to lower net emissions of GHGs while increasing N retention (and fertiliser N value) in the mature compost.

Publication Type: Journal Article
Source of Publication: Waste Management, v.61, p. 138-149
Publisher: Elsevier Ltd
Place of Publication: United Kingdom
ISSN: 1879-2456
0956-053X
Fields of Research (FoR) 2020: 4101 Climate change impacts and adaptation
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
1 files
File SizeFormat 
Show full item record

SCOPUSTM   
Citations

134
checked on Jan 18, 2025

Page view(s)

206
checked on Aug 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.