Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorClarke, Allisteren
dc.contributor.authorDunn, Brian Wen
dc.contributor.authorGroat, Marken
dc.date.accessioned2024-05-20T05:13:18Z-
dc.date.available2024-05-20T05:13:18Z-
dc.date.issued2024-06-15-
dc.identifier.citationAgricultural and Forest Meteorology, v.353, p. 1-19en
dc.identifier.issn1873-2240en
dc.identifier.issn0168-1923en
dc.identifier.urihttps://hdl.handle.net/1959.11/59509-
dc.description.abstract<p>Rice yield depends on factors including variety, weather, field management, nutrient and water availability. We analyzed important drivers of yield variability at the field scale, and developed yield forecast models for crops in the temperate irrigated rice growing region of Australia. We fused a time-series of Sentinel1 and Sentinel-2 satellite remote sensing imagery, spatial weather data and field management information. Rice phenology was predicted using previously reported models. Higher yields were associated with early flowering, higher chlorophyll indices and higher temperatures around flowering. Successive rice cropping in the same field was associated with lower yield (p<0.001). After running a series of leave-one-year-out cross validation experiments, final models were trained using 2018–2022 data, and were applied to predicting the yield of 1580 fields (43,700 hectares) from an independent season with challenging conditions (2023). Models which aggregated remote sensing and weather time-series data to phenological periods provided more accurate predictions than models that aggregated these predictors to calendar periods. The accuracy of forecast models improved as the growing season progressed, reaching RMSE=1.6 t/ha and Lin’s concordance correlation coefficient (LCCC) of 0.67 30 days after flowering at the field level. Explainability was provided using the SHAP method, revealing the likely drivers of yield variability overall, and of individual fields.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofAgricultural and Forest Meteorologyen
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleAnalysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather dataen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.agrformet.2024.110055en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameAllisteren
local.contributor.firstnameBrian Wen
local.contributor.firstnameMarken
dc.contributor.corporateAgriFutures Australiaen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber110055en
local.format.startpage1en
local.format.endpage19en
local.peerreviewedYesen
local.identifier.volume353en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameClarkeen
local.contributor.lastnameDunnen
local.contributor.lastnameGroaten
dc.identifier.staffune-id:jbrinkhoen
local.profile.orcid0000-0002-0721-2458en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59509en
local.date.onlineversion2024-05-18-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAnalysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather dataen
local.relation.fundingsourcenoteThis work was funded by AgriFutures Australia, grant PRO-013078 (Real-time remote-sensing based monitoring for the rice industry).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorClarke, Allisteren
local.search.authorDunn, Brian Wen
local.search.authorGroat, Marken
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2024en
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60en
local.subject.for2020300403 Agronomyen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.seo2020260308 Riceen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AnalysisBrinkhoff2024JournalArticle.pdfPublished Version7.96 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons