Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59509
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brinkhoff, James | en |
dc.contributor.author | Clarke, Allister | en |
dc.contributor.author | Dunn, Brian W | en |
dc.contributor.author | Groat, Mark | en |
dc.date.accessioned | 2024-05-20T05:13:18Z | - |
dc.date.available | 2024-05-20T05:13:18Z | - |
dc.date.issued | 2024-06-15 | - |
dc.identifier.citation | Agricultural and Forest Meteorology, v.353, p. 1-19 | en |
dc.identifier.issn | 1873-2240 | en |
dc.identifier.issn | 0168-1923 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59509 | - |
dc.description.abstract | <p>Rice yield depends on factors including variety, weather, field management, nutrient and water availability. We analyzed important drivers of yield variability at the field scale, and developed yield forecast models for crops in the temperate irrigated rice growing region of Australia. We fused a time-series of Sentinel1 and Sentinel-2 satellite remote sensing imagery, spatial weather data and field management information. Rice phenology was predicted using previously reported models. Higher yields were associated with early flowering, higher chlorophyll indices and higher temperatures around flowering. Successive rice cropping in the same field was associated with lower yield (p<0.001). After running a series of leave-one-year-out cross validation experiments, final models were trained using 2018–2022 data, and were applied to predicting the yield of 1580 fields (43,700 hectares) from an independent season with challenging conditions (2023). Models which aggregated remote sensing and weather time-series data to phenological periods provided more accurate predictions than models that aggregated these predictors to calendar periods. The accuracy of forecast models improved as the growing season progressed, reaching RMSE=1.6 t/ha and Lin’s concordance correlation coefficient (LCCC) of 0.67 30 days after flowering at the field level. Explainability was provided using the SHAP method, revealing the likely drivers of yield variability overall, and of individual fields.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Agricultural and Forest Meteorology | en |
dc.rights | Attribution-NonCommercial 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.title | Analysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather data | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.agrformet.2024.110055 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | James | en |
local.contributor.firstname | Allister | en |
local.contributor.firstname | Brian W | en |
local.contributor.firstname | Mark | en |
dc.contributor.corporate | AgriFutures Australia | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 110055 | en |
local.format.startpage | 1 | en |
local.format.endpage | 19 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 353 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Brinkhoff | en |
local.contributor.lastname | Clarke | en |
local.contributor.lastname | Dunn | en |
local.contributor.lastname | Groat | en |
dc.identifier.staff | une-id:jbrinkho | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59509 | en |
local.date.onlineversion | 2024-05-18 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Analysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather data | en |
local.relation.fundingsourcenote | This work was funded by AgriFutures Australia, grant PRO-013078 (Real-time remote-sensing based monitoring for the rice industry). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Brinkhoff, James | en |
local.search.author | Clarke, Allister | en |
local.search.author | Dunn, Brian W | en |
local.search.author | Groat, Mark | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2024 | en |
local.year.published | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/a36e350c-f525-40b5-9a7b-c49354c29c60 | en |
local.subject.for2020 | 300403 Agronomy | en |
local.subject.for2020 | 401304 Photogrammetry and remote sensing | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.seo2020 | 260308 Rice | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AnalysisBrinkhoff2024JournalArticle.pdf | Published Version | 7.96 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License