Author(s) |
Quah, Kian Hong
Quek, Hiok Chai
Leedham, Graham
|
Publication Date |
2005
|
Abstract |
Reinforcement learning has been widely-used for applications in planning, control, and decision making. Rather than using instructive feedback as in supervised learning, reinforcement learning makes use of evaluative feedback to guide the learning process. In this paper, we formulate a pattern classification problem as a reinforcement learning problem. The problem is realized with a temporal difference method in a FALCON-R network. FALCON-R is constructed by integrating two basic FALCON-ART networks as function approximators, where one acts as a critic network (fuzzy predictor) and the other as an action network (fuzzy controller). This paper serves as a guideline in formulating a classification problem as a reinforcement learning problem using FALCON-R. The strengths of applying the reinforcement learning method to the pattern classification application are demonstrated. We show that such a system can converge faster, is able to escape from local minima, and has excellent disturbance rejection capability.
|
Citation |
Pattern Recognition, 38(4), p. 513-526
|
ISSN |
1873-5142
0031-3203
|
Link | |
Publisher |
Elsevier Ltd
|
Title |
Reinforcement learning combined with a fuzzy adaptive learning control network (FALCON-R) for pattern classification
|
Type of document |
Journal Article
|
Entity Type |
Publication
|
Name | Size | format | Description | Link |
---|