Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAldridge, Michaelen
dc.contributor.authorVandenplas, Jeremieen
dc.contributor.authorDuenk, Pascalen
dc.contributor.authorHenshall, Johnen
dc.contributor.authorHawken, Rachelen
dc.contributor.authorCalus, Marioen
dc.date.accessioned2024-05-15T02:56:37Z-
dc.date.available2024-05-15T02:56:37Z-
dc.date.issued2023-03-22-
dc.identifier.citationGenetics Selection Evolution, 55(19), p. 1-12en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/59281-
dc.description.abstract<p><b>Background</b> In genomic prediction, it is common to centre the genotypes of single nucleotide polymorphisms based on the allele frequencies in the current population, rather than those in the base generation. The mean breeding value of non-genotyped animals is conditional on the mean performance of genotyped relatives, but can be corrected by fitting the mean performance of genotyped individuals as a fixed regression. The associated covariate vector has been referred to as a 'J-factor', which if fitted as a fixed effect can improve the accuracy and dispersion bias of sire genomic estimated breeding values (GEBV). To date, this has only been performed on populations with a single breed. Here, we investigated whether there was any benefit in fitting a separate J-factor for each breed in a three-way crossbred population, and in using pedigree-based expected or genome-based estimated breed fractions to define the J-factors.</p> <p><b>Results</b> For body weight at 7 days, dispersion bias decreased when fitting multiple J-factors, but only with a low proportion of genotyped individuals with selective genotyping. On average, the mean regression coefficient of validation records on those of GEBV increased with one J-factor compared to none, and further increased with multiple J-factors. However, for body weight at 35 days this was not observed. The accuracy of GEBV remained unchanged regardless of the J-factor method used. Differences between the J-factor methods were limited with correlations approaching 1 for the estimated covariate vector, the estimated coefficient of the regression on the J-factors, and the GEBV.</p> <p><b>Conclusions</b> Based on our results and in the particular design analysed here, i.e. all the animals with phenotype are of the same type of crossbreds, fitting a single J-factor should be sufficient, to reduce dispersion bias. Fitting multiple J-factors may reduce dispersion bias further but this depends on the trait and genotyping rate. For the crossbred population analysed, fitting multiple J-factors has no adverse consequences and if this is done, it does not matter if the breed fractions used are based on the pedigree-expectation or the genomic estimates. Finally, when GEBV are estimated from crossbred data, any observed bias can potentially be reduced by including a straightforward regression on actual breed proportions.</p>en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleValidation with single-step SNPBLUP shows that evaluations can continue using a single mean of genotyped individuals, even with multiple breedsen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-023-00787-1en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMichaelen
local.contributor.firstnameJeremieen
local.contributor.firstnamePascalen
local.contributor.firstnameJohnen
local.contributor.firstnameRachelen
local.contributor.firstnameMarioen
local.profile.schoolDeputy Vice-Chancellor (Research)en
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailmaldrid3@une.edu.auen
local.profile.emailpduenk2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage1en
local.format.endpage12en
local.peerreviewedYesen
local.identifier.volume55en
local.identifier.issue19en
local.access.fulltextYesen
local.contributor.lastnameAldridgeen
local.contributor.lastnameVandenplasen
local.contributor.lastnameDuenken
local.contributor.lastnameHenshallen
local.contributor.lastnameHawkenen
local.contributor.lastnameCalusen
dc.identifier.staffune-id:maldrid3en
dc.identifier.staffune-id:pduenk2en
local.profile.orcid0000-0002-9033-3081en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59281en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleValidation with single-step SNPBLUP shows that evaluations can continue using a single mean of genotyped individuals, even with multiple breedsen
local.relation.fundingsourcenoteThis study was financially supported by the Dutch Ministry of Economic Affairs (TKI Agri & Food Project 16022) and the Breed4Food partners Cobb Europe (Colchester, Essex, United Kingdom), CRV (Arnhem, the Netherlands), Hendrix Genetics (Boxmeer, the Netherlands), and Topigs Norsvin (Helvoirt, the Netherlands).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAldridge, Michaelen
local.search.authorVandenplas, Jeremieen
local.search.authorDuenk, Pascalen
local.search.authorHenshall, Johnen
local.search.authorHawken, Rachelen
local.search.authorCalus, Marioen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/ccb864f7-9539-414a-849e-e8e36812cdc6en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/ccb864f7-9539-414a-849e-e8e36812cdc6en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/ccb864f7-9539-414a-849e-e8e36812cdc6en
local.subject.for20203003 Animal productionen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-05-15en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ValidationAldridgeDuenk2023JournalArticle.pdfPublished Version871.45 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 28, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons