Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/58856
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suarez Cadavid, L A | en |
dc.contributor.author | Robertson-Dean, Melanie | en |
dc.contributor.author | Brinkhoff, J | en |
dc.contributor.author | Robson, A | en |
dc.date.accessioned | 2024-05-01T22:42:57Z | - |
dc.date.available | 2024-05-01T22:42:57Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Precision Agriculture, v.25, p. 570-588 | en |
dc.identifier.issn | 1573-1618 | en |
dc.identifier.issn | 1385-2256 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/58856 | - |
dc.description.abstract | <p>Accurate, non-destructive forecasting of carrot yield is difcult due to its subterranean growing habit. Furthermore, the timing of forecasting usually occurs when the crop is mature, limiting the opportunity to implement alternative management decisions to improve yield (during the growing season). This study aims to improve the accuracy of carrot yield forecasting by exploring time series and multivariate approaches. Using Sentinel-2 satellite imagery in three Australian vegetable regions, we established a time series of carrot phenological stages (PhS) from 'days after sowing' (DAS) to enhance prediction timing. Numerous vegetation indices (VIs) were analyzed to derive temporal growth patterns. Correlations with yield at diferent PhS were established. Although the average root yield (t ha<sup>−1</sup>) did not signifcantly difer across the regions, the temporal VI signatures, indicating diferent regional crop growth trends, did vary as well as the PhS at when the maximum correlation with yield occurred (PhS<sub>R2max</sub>) with two of the regions producing a delayed PhS<sub>R2max</sub> (i.e. 90–130 DAS). The best multivariate model was identifed at 70 DAS, extending the forecasting window before harvest between 20 to 60 days. The performance of this model was validated with new crops producing an average error of 16.9 t ha<sup>−1</sup> (27% of total yield). These results demonstrate the potential of the model at such early stage under varying growing conditions ofering growers and stakeholders the chance to optimize farming practices, make informed decisions on selling, harvesting, and labor planning, and adopt precision agriculture methods.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Precision Agriculture | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s11119-023-10083-z | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | L A | en |
local.contributor.firstname | Melanie | en |
local.contributor.firstname | J | en |
local.contributor.firstname | A | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | lsuarezc@une.edu.au | en |
local.profile.email | mrober68@une.edu.au | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.profile.email | arobson7@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 570 | en |
local.format.endpage | 588 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 25 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Suarez Cadavid | en |
local.contributor.lastname | Robertson-Dean | en |
local.contributor.lastname | Brinkhoff | en |
local.contributor.lastname | Robson | en |
dc.identifier.staff | une-id:lsuarezc | en |
dc.identifier.staff | une-id:mrober68 | en |
dc.identifier.staff | une-id:jbrinkho | en |
dc.identifier.staff | une-id:arobson7 | en |
local.profile.orcid | 0000-0002-4233-2172 | en |
local.profile.orcid | 0000-0001-8964-773X | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.orcid | 0000-0001-5762-8980 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/58856 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition | en |
local.relation.fundingsourcenote | This project (VG16009) has been funded by Horticulture Innovation Australia, using the vegetable research and development levy and contributions from the Australian Government. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Suarez Cadavid, L A | en |
local.search.author | Robertson-Dean, Melanie | en |
local.search.author | Brinkhoff, J | en |
local.search.author | Robson, A | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050e | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050e | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050e | en |
local.subject.for2020 | 300802 Horticultural crop growth and development | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.for2020 | 401304 Photogrammetry and remote sensing | en |
local.subject.seo2020 | 260505 Field grown vegetable crops | en |
local.codeupdate.date | 2024-07-02T16:04:02.853 | en |
local.codeupdate.eperson | jbrinkho@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 3002 Agriculture, land and farm management | en |
local.original.seo2020 | tbd | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.date.moved | 2024-05-02 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ForecastingSuarezCadavidRobertsonDeanBrinkhoffRobson2024JournalArticle.pdf | Published version | 3.35 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
3
checked on Oct 26, 2024
This item is licensed under a Creative Commons License