Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58856
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuarez Cadavid, L Aen
dc.contributor.authorRobertson-Dean, Melanieen
dc.contributor.authorBrinkhoff, Jen
dc.contributor.authorRobson, Aen
dc.date.accessioned2024-05-01T22:42:57Z-
dc.date.available2024-05-01T22:42:57Z-
dc.date.issued2023-
dc.identifier.citationPrecision Agriculture, v.25, p. 570-588en
dc.identifier.issn1573-1618en
dc.identifier.issn1385-2256en
dc.identifier.urihttps://hdl.handle.net/1959.11/58856-
dc.description.abstract<p>Accurate, non-destructive forecasting of carrot yield is difcult due to its subterranean growing habit. Furthermore, the timing of forecasting usually occurs when the crop is mature, limiting the opportunity to implement alternative management decisions to improve yield (during the growing season). This study aims to improve the accuracy of carrot yield forecasting by exploring time series and multivariate approaches. Using Sentinel-2 satellite imagery in three Australian vegetable regions, we established a time series of carrot phenological stages (PhS) from 'days after sowing' (DAS) to enhance prediction timing. Numerous vegetation indices (VIs) were analyzed to derive temporal growth patterns. Correlations with yield at diferent PhS were established. Although the average root yield (t ha<sup>−1</sup>) did not signifcantly difer across the regions, the temporal VI signatures, indicating diferent regional crop growth trends, did vary as well as the PhS at when the maximum correlation with yield occurred (PhS<sub>R2max</sub>) with two of the regions producing a delayed PhS<sub>R2max</sub> (i.e. 90–130 DAS). The best multivariate model was identifed at 70 DAS, extending the forecasting window before harvest between 20 to 60 days. The performance of this model was validated with new crops producing an average error of 16.9 t ha<sup>−1</sup> (27% of total yield). These results demonstrate the potential of the model at such early stage under varying growing conditions ofering growers and stakeholders the chance to optimize farming practices, make informed decisions on selling, harvesting, and labor planning, and adopt precision agriculture methods.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofPrecision Agricultureen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleForecasting carrot yield with optimal timing of Sentinel 2 image acquisitionen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s11119-023-10083-zen
dcterms.accessRightsUNE Greenen
local.contributor.firstnameL Aen
local.contributor.firstnameMelanieen
local.contributor.firstnameJen
local.contributor.firstnameAen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillsuarezc@une.edu.auen
local.profile.emailmrober68@une.edu.auen
local.profile.emailjbrinkho@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage570en
local.format.endpage588en
local.peerreviewedYesen
local.identifier.volume25en
local.access.fulltextYesen
local.contributor.lastnameSuarez Cadaviden
local.contributor.lastnameRobertson-Deanen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameRobsonen
dc.identifier.staffune-id:lsuarezcen
dc.identifier.staffune-id:mrober68en
dc.identifier.staffune-id:jbrinkhoen
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0002-4233-2172en
local.profile.orcid0000-0001-8964-773Xen
local.profile.orcid0000-0002-0721-2458en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58856en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleForecasting carrot yield with optimal timing of Sentinel 2 image acquisitionen
local.relation.fundingsourcenoteThis project (VG16009) has been funded by Horticulture Innovation Australia, using the vegetable research and development levy and contributions from the Australian Government.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSuarez Cadavid, L Aen
local.search.authorRobertson-Dean, Melanieen
local.search.authorBrinkhoff, Jen
local.search.authorRobson, Aen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050een
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050een
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/e4f57472-47f9-45b0-94c5-4cd63d0d050een
local.subject.for2020300802 Horticultural crop growth and developmenten
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.seo2020260505 Field grown vegetable cropsen
local.codeupdate.date2024-07-02T16:04:02.853en
local.codeupdate.epersonjbrinkho@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20203002 Agriculture, land and farm managementen
local.original.seo2020tbden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-05-02en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ForecastingSuarezCadavidRobertsonDeanBrinkhoffRobson2024JournalArticle.pdfPublished version3.35 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons