Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThimmakondu, Venkatesan Sen
dc.contributor.authorKarton, Amiren
dc.date.accessioned2024-04-19T01:31:43Z-
dc.date.available2024-04-19T01:31:43Z-
dc.date.issued2023-09-02-
dc.identifier.citationMolecules, 28(18), p. 1-14en
dc.identifier.issn1420-3049en
dc.identifier.urihttps://hdl.handle.net/1959.11/58464-
dc.description.abstract<p>We evaluate the accuracy of CCSD(T) and density functional theory (DFT) methods for the calculation of equilibrium rotational constants (A<sub>e</sub>, B<sub>e</sub>, and C<sub>e</sub> ) for four experimentally detected low-lying C<sub>5</sub>H<sub>2</sub> isomers (ethynylcyclopropenylidene (2), pentatetraenylidene (3), ethynylpropadienylidene (5), and 2-cyclopropen-1-ylidenethenylidene (8)). The calculated rotational constants are compared to semi-experimental rotational constants obtained by converting the vibrationally averaged experimental rotational constants (A<sub>0</sub>, B<sub>0</sub>, and C<sub>0</sub> ) to equilibrium values by subtracting the vibrational contributions (calculated at the B3LYP/jun-cc-pVTZ level of the theory). The considered isomers are closed-shell carbenes, with cumulene, acetylene, or strained cyclopropene moieties, and are therefore highly challenging from an electronic structure point of view. We consider both frozen-core and all-electron CCSD(T) calculations, as well as a range of DFT methods. We find that calculating the equilibrium rotational constants of these C<sub>5</sub>H<sub>2</sub> isomers is a difficult task, even at the CCSD(T) level. For example, at the all-electron CCSD(T)/cc-pwCVTZ level of the theory, we obtain percentage errors ≤ 0.4% (C<sub>e</sub> of isomer 3, B<sub>e</sub> and C<sub>e</sub> of isomer 5, and B<sub>e</sub> of isomer 8) and 0.9–1.5% (B<sub>e</sub> and C<sub>e</sub> of isomer 2, A<sub>e</sub> of isomer 5, and C<sub>e</sub> of isomer 8), whereas for the A<sub>e</sub> rotational constant of isomers 2 and 8 and B<sub>e</sub> rotational constant of isomer 3, high percentage errors above 3% are obtained. These results highlight the challenges associated with calculating accurate rotational constants for isomers with highly challenging electronic structures, which is further complicated by the need to convert vibrationally averaged experimental rotational constants to equilibrium values. We use our best CCSD(T) rotational constants (namely, ae-CCSD(T)/cc-pwCVTZ for isomers 2 and 5, and ae-CCSD(T)/cc-pCVQZ for isomers 3 and 8) to evaluate the performance of DFT methods across the rungs of Jacob’s Ladder. We find that the considered pure functionals (BLYP-D3BJ, PBE-D3BJ, and TPSS-D3BJ) perform significantly better than the global and range-separated hybrid functionals. The double-hybrid DSD-PBEP86-D3BJ method shows the best overall performance, with percentage errors below 0.5% in nearly all cases.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofMoleculesen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleCCSD(T) Rotational Constants for Highly Challenging C5H2 Isomers—A Comparison between Theory and Experimenten
dc.typeJournal Articleen
dc.identifier.doi10.3390/molecules28186537en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameVenkatesan Sen
local.contributor.firstnameAmiren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber6537en
local.format.startpage1en
local.format.endpage14en
local.peerreviewedYesen
local.identifier.volume28en
local.identifier.issue18en
local.access.fulltextYesen
local.contributor.lastnameThimmakonduen
local.contributor.lastnameKartonen
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58464en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCCSD(T) Rotational Constants for Highly Challenging C5H2 Isomers—A Comparison between Theory and Experimenten
local.relation.fundingsourcenoteComputational support provided at the SDSU (for VST) by DURIP Grant W911NF-10-1- 0157 from the U.S. Department of Defense and by NSF CRIF 338 Grant CHE-0947087 is gratefully acknowledged.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorThimmakondu, Venkatesan Sen
local.search.authorKarton, Amiren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/0fcc98e3-ae2b-4dd5-aaab-e86d926ee7f6en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/0fcc98e3-ae2b-4dd5-aaab-e86d926ee7f6en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/0fcc98e3-ae2b-4dd5-aaab-e86d926ee7f6en
local.subject.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-04-19en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/CCSDKarton2023JournalArticle.pdfPublished version427.63 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

Page view(s)

202
checked on May 12, 2024

Download(s)

4
checked on May 12, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons