Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58001
Title: Across-Experiment Transcriptomics of Sheep Rumen Identifies Expression of Lipid/Oxo-Acid Metabolism and Muscle Cell Junction Genes Associated With Variation in Methane-Related Phenotypes
Contributor(s): Xiang, Ruidong (author); McNally, Jody (author); Bond, Jude (author); Tucker, David  (author); Cameron, Margaret  (author); Donaldson, Alistair J (author); Austin, Katie L (author); Rowe, Suzanne (author); Jonker, Arjan (author); Pinares-Patino, Cesar S (author); McEwan, John C (author); Vercoe, Phil E (author); Oddy, V H  (author)orcid ; Dalrymple, Brian P (author)
Publication Date: 2018-08-20
Open Access: Yes
DOI: 10.3389/fgene.2018.00330
Handle Link: https://hdl.handle.net/1959.11/58001
Abstract: 

Ruminants are significant contributors to the livestock generated component of the greenhouse gas, methane (CH4). The CH4 is primarily produced by the rumen microbes. Although the composition of the diet and animal intake amount have the largest effect on CH4 production and yield (CH4 production/dry matter intake, DMI), the host also influences CH4 yield. Shorter rumen feed mean retention time (MRT) is associated with higher dry matter intake and lower CH4 yield, but the molecular mechanism(s) by which the host affects CH4 production remain unclear. We integrated rumen wall transcriptome data and CH4 phenotypes from two independent experiments conducted with sheep in Australia (AUS, n = 62) and New Zealand (NZ, n = 24). The inclusion of the AUS data validated the previously identified clusters and gene sets representing rumen epithelial, metabolic and muscular functions. In addition, the expression of the cell cycle genes as a group was consistently positively correlated with acetate and butyrate concentrations (p < 0.05, based on AUS and NZ data together). The expression of a group of metabolic genes showed positive correlations in both AUS and NZ datasets with CH4 production (p < 0.05) and yield (p < 0.01). These genes encode key enzymes in the ketone body synthesis pathway and included members of the poorly characterized aldo-keto reductase 1C (AKR1C ) family. Several AKR1C family genes appear to have ruminant specific evolution patterns, supporting their specialized roles in the ruminants. Combining differential gene expression in the rumen wall muscle of the shortest and longest MRT AUS animals (no data available for the NZ animals) with correlation and network analysis, we identified a set of rumen muscle genes involved in cell junctions as potential regulators of MRT, presumably by influencing contraction rates of the smooth muscle component of the rumen wall. Higher rumen expression of these genes, including SYNPO (synaptopodin, p < 0.01) and NEXN (nexilin, p < 0.05), was associated with lower CH4 yield in both AUS and NZ datasets. Unlike the metabolic genes, the variations in the expression of which may reflect the availability of rumen metabolites, the muscle genes are currently our best candidates for causal genes that influence CH4 yield.

Publication Type: Journal Article
Source of Publication: Frontiers in Genetics, v.9, p. 1-17
Publisher: Frontiers Research Foundation
Place of Publication: Switzerland
ISSN: 1664-8021
Fields of Research (FoR) 2020: 3003 Animal production
Socio-Economic Objective (SEO) 2020: TBD
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
openpublished/AcrossExperimentTuckerCameron2018JournalArticle.pdfPublished version4.85 MBAdobe PDF
Download Adobe
View/Open
Show full item record

SCOPUSTM   
Citations

6
checked on Apr 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons