Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/57836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaygin, Mehmeten
dc.contributor.authorBarua, Prabal Dattaen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorTuncer, Ilknuren
dc.contributor.authorDogan, Sengulen
dc.contributor.authorPalmer, Elizabethen
dc.contributor.authorTuncer, Turkeren
dc.contributor.authorKamath, Aditya Pen
dc.contributor.authorCiaccio, Edward Jen
dc.contributor.authorRajendra, Acharya Uen
dc.date.accessioned2024-03-19T04:17:51Z-
dc.date.available2024-03-19T04:17:51Z-
dc.date.issued2023-03-14-
dc.identifier.citationPhysiological Measurement, 44(3), p. 1-20en
dc.identifier.issn1361-6579en
dc.identifier.issn0967-3334en
dc.identifier.urihttps://hdl.handle.net/1959.11/57836-
dc.description.abstract<p><i>Objective</i> . Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals. <i>Approach</i> . In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels. <i>Main results</i> . The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier. <i>Significance</i> . Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.</p>en
dc.languageenen
dc.publisherInstitute of Physics Publishing Ltden
dc.relation.ispartofPhysiological Measurementen
dc.titleCCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signalsen
dc.typeJournal Articleen
dc.identifier.doi10.1088/1361-6579/acb03cen
dc.subject.keywordsEEG signal classificationen
dc.subject.keywordsEngineeringen
dc.subject.keywordscarbon chain patternen
dc.subject.keywordsiterative tunable q-factor wavelet transformen
dc.subject.keywordsschizophrenia detectionen
dc.subject.keywordsBiophysicsen
dc.subject.keywordsEngineering, Biomedicalen
dc.subject.keywordsPhysiologyen
local.contributor.firstnameMehmeten
local.contributor.firstnamePrabal Dattaen
local.contributor.firstnameSubrataen
local.contributor.firstnameIlknuren
local.contributor.firstnameSengulen
local.contributor.firstnameElizabethen
local.contributor.firstnameTurkeren
local.contributor.firstnameAditya Pen
local.contributor.firstnameEdward Jen
local.contributor.firstnameAcharya Uen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber035008en
local.format.startpage1en
local.format.endpage20en
local.peerreviewedYesen
local.identifier.volume44en
local.identifier.issue3en
local.title.subtitleautomated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signalsen
local.contributor.lastnameBayginen
local.contributor.lastnameBaruaen
local.contributor.lastnameChakrabortyen
local.contributor.lastnameTunceren
local.contributor.lastnameDoganen
local.contributor.lastnamePalmeren
local.contributor.lastnameTunceren
local.contributor.lastnameKamathen
local.contributor.lastnameCiaccioen
local.contributor.lastnameRajendraen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/57836en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCCPNet136en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBaygin, Mehmeten
local.search.authorBarua, Prabal Dattaen
local.search.authorChakraborty, Subrataen
local.search.authorTuncer, Ilknuren
local.search.authorDogan, Sengulen
local.search.authorPalmer, Elizabethen
local.search.authorTuncer, Turkeren
local.search.authorKamath, Aditya Pen
local.search.authorCiaccio, Edward Jen
local.search.authorRajendra, Acharya Uen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ab1ab555-2191-4a97-81ff-62a0690affd5en
local.subject.for20204601 Applied computingen
local.subject.seo2020TBDen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.