Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/57836
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baygin, Mehmet | en |
dc.contributor.author | Barua, Prabal Datta | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Tuncer, Ilknur | en |
dc.contributor.author | Dogan, Sengul | en |
dc.contributor.author | Palmer, Elizabeth | en |
dc.contributor.author | Tuncer, Turker | en |
dc.contributor.author | Kamath, Aditya P | en |
dc.contributor.author | Ciaccio, Edward J | en |
dc.contributor.author | Rajendra, Acharya U | en |
dc.date.accessioned | 2024-03-19T04:17:51Z | - |
dc.date.available | 2024-03-19T04:17:51Z | - |
dc.date.issued | 2023-03-14 | - |
dc.identifier.citation | Physiological Measurement, 44(3), p. 1-20 | en |
dc.identifier.issn | 1361-6579 | en |
dc.identifier.issn | 0967-3334 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/57836 | - |
dc.description.abstract | <p><i>Objective</i> . Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals. <i>Approach</i> . In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels. <i>Main results</i> . The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier. <i>Significance</i> . Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.</p> | en |
dc.language | en | en |
dc.publisher | Institute of Physics Publishing Ltd | en |
dc.relation.ispartof | Physiological Measurement | en |
dc.title | CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1088/1361-6579/acb03c | en |
dc.subject.keywords | EEG signal classification | en |
dc.subject.keywords | Engineering | en |
dc.subject.keywords | carbon chain pattern | en |
dc.subject.keywords | iterative tunable q-factor wavelet transform | en |
dc.subject.keywords | schizophrenia detection | en |
dc.subject.keywords | Biophysics | en |
dc.subject.keywords | Engineering, Biomedical | en |
dc.subject.keywords | Physiology | en |
local.contributor.firstname | Mehmet | en |
local.contributor.firstname | Prabal Datta | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | Ilknur | en |
local.contributor.firstname | Sengul | en |
local.contributor.firstname | Elizabeth | en |
local.contributor.firstname | Turker | en |
local.contributor.firstname | Aditya P | en |
local.contributor.firstname | Edward J | en |
local.contributor.firstname | Acharya U | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 035008 | en |
local.format.startpage | 1 | en |
local.format.endpage | 20 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 44 | en |
local.identifier.issue | 3 | en |
local.title.subtitle | automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals | en |
local.contributor.lastname | Baygin | en |
local.contributor.lastname | Barua | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Tuncer | en |
local.contributor.lastname | Dogan | en |
local.contributor.lastname | Palmer | en |
local.contributor.lastname | Tuncer | en |
local.contributor.lastname | Kamath | en |
local.contributor.lastname | Ciaccio | en |
local.contributor.lastname | Rajendra | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/57836 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | CCPNet136 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Baygin, Mehmet | en |
local.search.author | Barua, Prabal Datta | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Tuncer, Ilknur | en |
local.search.author | Dogan, Sengul | en |
local.search.author | Palmer, Elizabeth | en |
local.search.author | Tuncer, Turker | en |
local.search.author | Kamath, Aditya P | en |
local.search.author | Ciaccio, Edward J | en |
local.search.author | Rajendra, Acharya U | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/ab1ab555-2191-4a97-81ff-62a0690affd5 | en |
local.subject.for2020 | 4601 Applied computing | en |
local.subject.seo2020 | TBD | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.