Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/57758
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Zhiguoen
dc.contributor.authorNie, Huaen
dc.contributor.authorDu, Yihongen
dc.date.accessioned2024-03-06T00:47:12Z-
dc.date.available2024-03-06T00:47:12Z-
dc.date.issued2024-
dc.identifier.citationEuropean Journal of Applied Mathematics, v.35, p. 462-482en
dc.identifier.issn1469-4425en
dc.identifier.issn0956-7925en
dc.identifier.urihttps://hdl.handle.net/1959.11/57758-
dc.description.abstract<p>We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval [<i>g(t), h(t)</i>] in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. <i>J. Math. Biol</i>. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. <i>J. Math. Biol</i>. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely <i>lim<sub>t→∞</sub> h(t)/t = lim<sub>t→∞</sub> [− g(t)/t] = c<sub>ν</sub></i> , with c<sub>ν</sub></i> the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. <i>J. Math. Biol</i>. 79, 433–466, 2019): we show that <i>h(t) − c<sub>ν</sub>t</i> and <i>g(t) + c<sub>ν</sub>t</i> converge to some constants as <i>t → ∞</i>, and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models. </p>en
dc.languageenen
dc.publisherCambridge University Pressen
dc.relation.ispartofEuropean Journal of Applied Mathematicsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSharp asymptotic profile of the solution to a West Nile virus model with free boundaryen
dc.typeJournal Articleen
dc.identifier.doi10.1017/S0956792523000281en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameZhiguoen
local.contributor.firstnameHuaen
local.contributor.firstnameYihongen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage462en
local.format.endpage482en
local.peerreviewedYesen
local.identifier.volume35en
local.access.fulltextYesen
local.contributor.lastnameWangen
local.contributor.lastnameNieen
local.contributor.lastnameDuen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/57758en
local.date.onlineversion2023-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSharp asymptotic profile of the solution to a West Nile virus model with free boundaryen
local.relation.fundingsourcenoteThe Natural Science Foundation of China (12071270,12371496) and the Natural Science Basic Research Program of Shaanxi (2023-JC-JQ-03).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorWang, Zhiguoen
local.search.authorNie, Huaen
local.search.authorDu, Yihongen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/526ba51f-d194-42f6-9305-2eb6dc6f6f07en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/526ba51f-d194-42f6-9305-2eb6dc6f6f07en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/526ba51f-d194-42f6-9305-2eb6dc6f6f07en
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2024-11-03T13:34:35.438en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/SharpDu2024JournalArticle.pdfPublished version286.95 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons