Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/5706
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sim, Leo Chin | en |
dc.contributor.author | Leedham, Graham | en |
dc.contributor.author | Jian, Leo Chin | en |
dc.contributor.author | Schroder, Heiko | en |
dc.date.accessioned | 2010-04-23T09:48:00Z | - |
dc.date.issued | 2003 | - |
dc.identifier.citation | Parallel Computing, 29(11-12), p. 1669-1684 | en |
dc.identifier.issn | 1872-7336 | en |
dc.identifier.issn | 0167-8191 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/5706 | - |
dc.description.abstract | In this paper, we propose a new high-speed computation algorithm for solving a large N x N matrix system using the MIMD–SIMD Hybrid System. The MIMD–SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (COWs) and SIMD systems working concurrently to produce an optimal parallel computation. We first introduce our prototype SIMD system and our Hybrid System setup before presenting how it can be implemented to find the unknowns in a large N x N linear matrix equation system using the 'Gauss–LU' algorithm. This algorithm basically performs the 'Divide and Conquer' approach by breaking down the large N x N matrix system into a manageable 32 x 32 matrix for fast computation. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Parallel Computing | en |
dc.title | Fast solution of large N x N matrix equations in an MIMD-SIMD hybrid system | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.parco.2003.05.011 | en |
dc.subject.keywords | Image Processing | en |
dc.subject.keywords | Computer Vision | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
local.contributor.firstname | Leo Chin | en |
local.contributor.firstname | Graham | en |
local.contributor.firstname | Leo Chin | en |
local.contributor.firstname | Heiko | en |
local.subject.for2008 | 080106 Image Processing | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.seo2008 | 810199 Defence not elsewhere classified | en |
local.subject.seo2008 | 890299 Computer Software and Services not elsewhere classified | en |
local.subject.seo2008 | 810107 National Security | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | Science and Technology | en |
local.profile.email | cleedham@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20100421-163254 | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 1669 | en |
local.format.endpage | 1684 | en |
local.identifier.scopusid | 0242574588 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 29 | en |
local.identifier.issue | 11-12 | en |
local.contributor.lastname | Sim | en |
local.contributor.lastname | Leedham | en |
local.contributor.lastname | Jian | en |
local.contributor.lastname | Schroder | en |
dc.identifier.staff | une-id:cleedham | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:5843 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Fast solution of large N x N matrix equations in an MIMD-SIMD hybrid system | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Sim, Leo Chin | en |
local.search.author | Leedham, Graham | en |
local.search.author | Jian, Leo Chin | en |
local.search.author | Schroder, Heiko | en |
local.uneassociation | Unknown | en |
local.year.published | 2003 | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Dec 28, 2024
Page view(s)
1,016
checked on Apr 2, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.