Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSykes, Danielen
dc.contributor.authorSchmalz, Gerden
dc.contributor.authorHarris, Adamen
dc.date.accessioned2023-12-13T22:11:32Z-
dc.date.available2023-12-13T22:11:32Z-
dc.date.created2021-09-
dc.date.issued2021-10-06-
dc.identifier.urihttps://hdl.handle.net/1959.11/56979-
dc.descriptionPlease contact rune@une.edu.au if you require access to this thesis for the purpose of research or study.en
dc.description.abstract<p>We consider spherical hypersurfaces in C<sup>2</sup> with a fixed Reeb vector field as 3-dimensional Sasakian manifolds. We establish the correspondence between three different sets of parameters, namely, those arising from representing the Reeb vector field as an automorphism of the Heisenberg sphere, the parameters used in Stanton’s description of rigid spheres, and the parameters arising from the rigid normal forms. We also geometrically describe the moduli space for rigid spheres, and provide geometric distinction between Stanton’s hypersurfaces and those found in [17]. We determine the Sasakian automorphism groups of the rigid spheres, detecting the homogeneous Sasakian manifolds amongst them, and we determine the Sasakian automorphisms of the CR manifolds arising in E. Cartan’s classical list of homogeneous CR hypersur- ´ faces. Furthermore, we relax the condition on the Reeb vector field to allow preservation up to a nonzero dilation, called homothetic Sasakian preservation. Finally, we determine the homogeneous Sasakian manifolds with respect to the homothetic Sasakian preservation.</p>en
dc.languageenen
dc.publisherUniversity of New England-
dc.relation.urihttps://hdl.handle.net/1959.11/56980en
dc.titleOn the Classification of Spherical Rigid CR Manifolds and Sasakian Manifolds in C2en
dc.typeThesis Masters Researchen
local.contributor.firstnameDanielen
local.contributor.firstnameGerden
local.contributor.firstnameAdamen
local.subject.for2008010102 Algebraic and Differential Geometryen
local.subject.for2008010111 Real and Complex Functions (incl. Several Variables)en
local.subject.for2008010504 Mathematical Aspects of General Relativityen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.hos.emailst-sabl@une.edu.auen
local.thesis.passedPasseden
local.thesis.degreelevelMasters researchen
local.thesis.degreenameMaster of Science � MScen
local.contributor.grantorUniversity of New England-
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.email14.daniel.sykes@gmail.comen
local.profile.emailschmalz@une.edu.auen
local.profile.emailaharris5@une.edu.auen
local.output.categoryT1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeArmidale, Australia-
local.contributor.lastnameSykesen
local.contributor.lastnameSchmalzen
local.contributor.lastnameHarrisen
dc.identifier.staffune-id:schmalzen
dc.identifier.staffune-id:aharris5en
local.profile.orcid0000-0002-6141-9329en
local.profile.orcid0000-0002-1259-1122en
local.profile.roleauthoren
local.profile.rolesupervisoren
local.profile.rolesupervisoren
local.identifier.unepublicationidune:1959.11/56979en
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.thesis.bypublicationNoen
local.title.maintitleOn the Classification of Spherical Rigid CR Manifolds and Sasakian Manifolds in C2en
local.output.categorydescriptionT1 Thesis - Masters Degree by Researchen
local.school.graduationSchool of Science & Technologyen
local.thesis.borndigitalYes-
local.search.authorSykes, Danielen
local.search.supervisorSchmalz, Gerden
local.search.supervisorHarris, Adamen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.conferred2021en
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:School of Science and Technology
Thesis Masters Research
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

Page view(s)

336
checked on Jun 23, 2024

Download(s)

4
checked on Jun 23, 2024
Google Media

Google ScholarTM

Check


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.