Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56707
Title: Biometric Identification of Cattle via Muzzle Print Patterns and Deep Learning in a Few-Shot Learning Context
Contributor(s): Shojaeipour, Ali  (creator); Falzon, Gregory  (supervisor)orcid ; Hadavi, Nooshin  (project team member); Cowley, Frances  (supervisor)orcid 
Publication Date: 2021-06-06
DOI: 10.25952/tsjx-5x70
Handle Link: https://hdl.handle.net/1959.11/56707
Related Research Outputs: https://hdl.handle.net/1959.11/56706
Abstract/Context: The dataset consists of 300 images of cattle faces. Each folder in the dataset represents individual cattle and the folder name correlates with the Cattle ID document for identification purposes.
Publication Type: Dataset
Fields of Research (FoR) 2020: 461103 Deep learning
300306 Animal welfare
461199 Machine learning not elsewhere classified
Socio-Economic Objective (SEO) 2020: 220403 Artificial intelligence
109902 Animal welfare
100401 Beef cattle
Keywords: Biometric Identification
Cattle identification
Few-Shot Learning
Livestock welfare
Muzzle detection
Location: Tullimba and Torryburn, New South Wales, Australia
HERDC Category Description: X Dataset
Project: Biometric Identification of Cattle via Muzzle Print Patterns and Deep Learning in a Few-Shot Learning Context
Dataset Managed By: Ali Shojaeipour
Rights Holder: Ali Shojaeipour
Dataset Stored at: University of New England
Primary Contact Details: Ali Shojaeipour - ali.shojaeipour@gmail.com
Dataset Custodian Details: Ali Shojaeipour - ali.shojaeipour@gmail.com
Appears in Collections:Dataset
School of Environmental and Rural Science
School of Science and Technology

Show full item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.