Propagation and reaction–diffusion models with free boundaries

Title
Propagation and reaction–diffusion models with free boundaries
Publication Date
2022-01-31
Author(s)
Du, Yihong
( author )
OrcID: https://orcid.org/0000-0002-1235-0636
Email: ydu@une.edu.au
UNE Id une-id:ydu
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
World Scientific Publishing Co Pte Ltd
Place of publication
Singapore
DOI
10.1142/S1664360722300018
UNE publication id
une:1959.11/56294
Abstract

In this short survey, we describe some recent developments on the modeling of propagation by reaction-differential equations with free boundaries, which involve local as well as nonlocal diffusion. After the pioneering works of Fisher, Kolmogorov–Petrovski–Piskunov (KPP) and Skellam, the use of reaction–diffusion equations to model propagation and spreading speed has been widely accepted, with remarkable progresses achieved in several directions, notably on propagation in heterogeneous media, models for interacting species including epidemic spreading, and propagation in shifting environment caused by climate change, to mention but a few. Such models involving a free boundary to represent the spreading front have been studied only recently, but fast progress has been made. Here, we will concentrate on these free boundary models, starting with those where spatial dispersal is represented by local diffusion. These include the Fisher–KPP model with free boundary and related problems, where both the one space dimension and high space dimension cases will be examined; they also include some two species population models with free boundaries, where we will show how the long-time dynamics of some competition models can be fully determined. We then consider the nonlocal Fisher–KPP model with free boundary, where the diffusion operator Δu is replaced by a nonlocal one involving a kernel function. We will show how a new phenomenon, known as accelerated spreading, can happen to such a model. After that, we will look at some epidemic models with nonlocal diffusion and free boundaries, and show how the long-time dynamics can be rather fully described. Some remarks and comments are made at the end of each section, where related problems and open questions will be briefly discussed.

Link
Citation
Bulletin of Mathematical Sciences, 12(01), p. 1-56
ISSN
1664-3615
1664-3607
Start page
1
End page
56
Rights
Attribution 4.0 International

Files:

NameSizeformatDescriptionLink
openpublished/PropagationDu2022JournalArticle.pdf 1143.515 KB application/pdf Published Version View document