Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56293
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Li, Wan-Tong | en |
dc.contributor.author | Ni, Wenjie | en |
dc.contributor.author | Zhao, Meng | en |
dc.date.accessioned | 2023-10-06T03:19:37Z | - |
dc.date.available | 2023-10-06T03:19:37Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Journal of Dynamics and Differential Equations, v.36, p. 1015-1063 | en |
dc.identifier.issn | 1572-9222 | en |
dc.identifier.issn | 1040-7294 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56293 | - |
dc.description.abstract | <p>We determine the spreading speed of an epidemic model with nonlocal diffusion and free boundary. The model is evolved from a degenerate reaction-diffusion model of Capasso and Maddalena (J Math Biol 13:173–184, 1981), and was studied in Zhao et al. (Commun Pure Appl Anal 19:4599–4620, 2020) recently, where it was shown that as time goes to infinity, the population of the infective agents either vanishes or spreads successfully. In this paper, we show that when spreading is successful, the asymptotic spreading speed is finite or infinite depending on whether a threshold condition is satisfied by the kernel function governing the spatial dispersal of the agents. The proof relies on a rather complete understanding of the associated semi-wave problem and traveling wave problem. For free boundary models, the case of infinite spreading speed, also known as accelerated spreading, is only recently shown to happen in Du et al. (J Math Pure Appl 154:30–66, 2021) for a single species Fisher-KPP model" this paper is the first to show that it happens to a very different two species model with free boundary. This suggests that accelerated spreading is a rather common phenomenon for free boundary problems with nonlocal diffusion. In contrast, for the corresponding models with local diffusion, the spreading can only proceed with finite speed.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Journal of Dynamics and Differential Equations | en |
dc.title | Finite or Infinite Spreading Speed of an Epidemic Model with Free Boundary and Double Nonlocal Effects | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s10884-022-10170-1 | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Wan-Tong | en |
local.contributor.firstname | Wenjie | en |
local.contributor.firstname | Meng | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.email | wni2@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United State of America | en |
local.format.startpage | 1015 | en |
local.format.endpage | 1063 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 36 | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Ni | en |
local.contributor.lastname | Zhao | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.staff | une-id:wni2 | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.orcid | 0000-0002-3147-7296 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56293 | en |
local.date.onlineversion | 2022-05-31 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Finite or Infinite Spreading Speed of an Epidemic Model with Free Boundary and Double Nonlocal Effects | en |
local.relation.fundingsourcenote | Li was supported by NSF of China (11731005, 11671180), and Zhao was supported by a scholarship from the China Scholarship Council (201806180022), which enabled him to visit the University of New England for 18 months. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Du, Yihong | en |
local.search.author | Li, Wan-Tong | en |
local.search.author | Ni, Wenjie | en |
local.search.author | Zhao, Meng | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2022 | en |
local.year.published | 2024 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/470eb8a9-4e4f-4626-81a0-70fa98fd581a | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490105 Dynamical systems in applications | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2024-11-03T13:34:57.841 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490105 Dynamical systems in applications | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.