Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorLi, Wan-Tongen
dc.contributor.authorNi, Wenjieen
dc.contributor.authorZhao, Mengen
dc.date.accessioned2023-10-06T03:19:37Z-
dc.date.available2023-10-06T03:19:37Z-
dc.date.issued2024-
dc.identifier.citationJournal of Dynamics and Differential Equations, v.36, p. 1015-1063en
dc.identifier.issn1572-9222en
dc.identifier.issn1040-7294en
dc.identifier.urihttps://hdl.handle.net/1959.11/56293-
dc.description.abstract<p>We determine the spreading speed of an epidemic model with nonlocal diffusion and free boundary. The model is evolved from a degenerate reaction-diffusion model of Capasso and Maddalena (J Math Biol 13:173–184, 1981), and was studied in Zhao et al. (Commun Pure Appl Anal 19:4599–4620, 2020) recently, where it was shown that as time goes to infinity, the population of the infective agents either vanishes or spreads successfully. In this paper, we show that when spreading is successful, the asymptotic spreading speed is finite or infinite depending on whether a threshold condition is satisfied by the kernel function governing the spatial dispersal of the agents. The proof relies on a rather complete understanding of the associated semi-wave problem and traveling wave problem. For free boundary models, the case of infinite spreading speed, also known as accelerated spreading, is only recently shown to happen in Du et al. (J Math Pure Appl 154:30–66, 2021) for a single species Fisher-KPP model" this paper is the first to show that it happens to a very different two species model with free boundary. This suggests that accelerated spreading is a rather common phenomenon for free boundary problems with nonlocal diffusion. In contrast, for the corresponding models with local diffusion, the spreading can only proceed with finite speed.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofJournal of Dynamics and Differential Equationsen
dc.titleFinite or Infinite Spreading Speed of an Epidemic Model with Free Boundary and Double Nonlocal Effectsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10884-022-10170-1en
local.contributor.firstnameYihongen
local.contributor.firstnameWan-Tongen
local.contributor.firstnameWenjieen
local.contributor.firstnameMengen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.profile.emailwni2@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited State of Americaen
local.format.startpage1015en
local.format.endpage1063en
local.peerreviewedYesen
local.identifier.volume36en
local.contributor.lastnameDuen
local.contributor.lastnameLien
local.contributor.lastnameNien
local.contributor.lastnameZhaoen
dc.identifier.staffune-id:yduen
dc.identifier.staffune-id:wni2en
local.profile.orcid0000-0002-1235-0636en
local.profile.orcid0000-0002-3147-7296en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56293en
local.date.onlineversion2022-05-31-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleFinite or Infinite Spreading Speed of an Epidemic Model with Free Boundary and Double Nonlocal Effectsen
local.relation.fundingsourcenoteLi was supported by NSF of China (11731005, 11671180), and Zhao was supported by a scholarship from the China Scholarship Council (201806180022), which enabled him to visit the University of New England for 18 months.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorDu, Yihongen
local.search.authorLi, Wan-Tongen
local.search.authorNi, Wenjieen
local.search.authorZhao, Mengen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/470eb8a9-4e4f-4626-81a0-70fa98fd581aen
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2024-11-03T13:34:57.841en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490105 Dynamical systems in applicationsen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.