Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56208
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Ting-Yingen
dc.contributor.authorDu, Yihongen
dc.date.accessioned2023-09-27T04:33:32Z-
dc.date.available2023-09-27T04:33:32Z-
dc.date.issued2022-01-04-
dc.identifier.citationElectronic Research Archive, 30(1), p. 289-313en
dc.identifier.issn2688-1594en
dc.identifier.urihttps://hdl.handle.net/1959.11/56208-
dc.description.abstract<p>In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. [1] by including spatial mobility of the infective host population. We obtain a rather complete description of the longtime dynamics of the model. For the reproduction number <i>R</i><sub>0</sub> arising from the corresponding ODE model, we establish its relationship to the spreading-vanishing dichotomy via an associated eigenvalue problem. If <i>R</i><sub>0</sub> ≤ 1, we prove that the epidemic vanishes eventually. On the other hand, if <i>R</i><sub>0</sub> > 1, we show that either spreading or vanishing may occur depending on its initial size. In the case of spreading, we make use of recent general results by Du and Ni [2] to show that finite speed or accelerated spreading occurs depending on whether a threshold condition is satisfied by the kernel functions in the nonlocal diffusion operators. In particular, the rate of accelerated spreading is determined for a general class of kernel functions. Our results indicate that, with all other factors fixed, the chance of successful spreading of the disease is increased when the mobility of the infective host is decreased, reaching a maximum when such mobility is 0 (which is the situation considered by Zhao et al. [1]).</p>en
dc.languageenen
dc.publisherAIMS Pressen
dc.relation.ispartofElectronic Research Archiveen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleLong-time dynamics of an epidemic model with nonlocal diffusion and free boundariesen
dc.typeJournal Articleen
dc.identifier.doi10.3934/era.2022016en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsnonlocal diffusionen
dc.subject.keywordsMathematicsen
dc.subject.keywordsfree boundaryen
dc.subject.keywordsspreading speeden
dc.subject.keywordsaccelerated spreadingen
local.contributor.firstnameTing-Yingen
local.contributor.firstnameYihongen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailtchang2@une.edu.auen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage289en
local.format.endpage313en
local.peerreviewedYesen
local.identifier.volume30en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameChangen
local.contributor.lastnameDuen
dc.identifier.staffune-id:tchang2en
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0001-6065-1305en
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56208en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLong-time dynamics of an epidemic model with nonlocal diffusion and free boundariesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.urlhttp://www.aimspress.com/article/doi/10.3934/era.2022016en
local.relation.grantdescriptionARC/DP190103757en
local.search.authorChang, Ting-Yingen
local.search.authorDu, Yihongen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000806762600016en
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/bab3c822-f733-4ce0-9d50-68a3c6b6ed97en
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons