Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56208
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, Ting-Ying | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2023-09-27T04:33:32Z | - |
dc.date.available | 2023-09-27T04:33:32Z | - |
dc.date.issued | 2022-01-04 | - |
dc.identifier.citation | Electronic Research Archive, 30(1), p. 289-313 | en |
dc.identifier.issn | 2688-1594 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56208 | - |
dc.description.abstract | <p>In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. [1] by including spatial mobility of the infective host population. We obtain a rather complete description of the longtime dynamics of the model. For the reproduction number <i>R</i><sub>0</sub> arising from the corresponding ODE model, we establish its relationship to the spreading-vanishing dichotomy via an associated eigenvalue problem. If <i>R</i><sub>0</sub> ≤ 1, we prove that the epidemic vanishes eventually. On the other hand, if <i>R</i><sub>0</sub> > 1, we show that either spreading or vanishing may occur depending on its initial size. In the case of spreading, we make use of recent general results by Du and Ni [2] to show that finite speed or accelerated spreading occurs depending on whether a threshold condition is satisfied by the kernel functions in the nonlocal diffusion operators. In particular, the rate of accelerated spreading is determined for a general class of kernel functions. Our results indicate that, with all other factors fixed, the chance of successful spreading of the disease is increased when the mobility of the infective host is decreased, reaching a maximum when such mobility is 0 (which is the situation considered by Zhao et al. [1]).</p> | en |
dc.language | en | en |
dc.publisher | AIMS Press | en |
dc.relation.ispartof | Electronic Research Archive | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Long-time dynamics of an epidemic model with nonlocal diffusion and free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3934/era.2022016 | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | nonlocal diffusion | en |
dc.subject.keywords | Mathematics | en |
dc.subject.keywords | free boundary | en |
dc.subject.keywords | spreading speed | en |
dc.subject.keywords | accelerated spreading | en |
local.contributor.firstname | Ting-Ying | en |
local.contributor.firstname | Yihong | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | tchang2@une.edu.au | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 289 | en |
local.format.endpage | 313 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 30 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Chang | en |
local.contributor.lastname | Du | en |
dc.identifier.staff | une-id:tchang2 | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0001-6065-1305 | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56208 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Long-time dynamics of an epidemic model with nonlocal diffusion and free boundaries | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.url | http://www.aimspress.com/article/doi/10.3934/era.2022016 | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Chang, Ting-Ying | en |
local.search.author | Du, Yihong | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000806762600016 | en |
local.year.published | 2022 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/bab3c822-f733-4ce0-9d50-68a3c6b6ed97 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490105 Dynamical systems in applications | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
This item is licensed under a Creative Commons License