Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56207
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorWu, Chang-Hongen
dc.date.accessioned2023-09-27T04:18:23Z-
dc.date.available2023-09-27T04:18:23Z-
dc.date.issued2022-02-03-
dc.identifier.citationCalculus of Variations and Partial Differential Equations, 61(2), p. 1-34en
dc.identifier.issn1432-0835en
dc.identifier.issn0944-2669en
dc.identifier.urihttps://hdl.handle.net/1959.11/56207-
dc.description.abstract<p>In this paper, we revisit the spreading behavior of two invasive species modelled by a diffusion-competition system with two free boundaries in a radially symmetric setting, where the reaction terms depict a weak-strong competition scenario. Our previous work (Du and Wu in Cal Var PDE 57:52, 2018) proves that from certain initial states, the two species develop into a "chase-and-run coexistence" state, namely the front of the weak species <i>v</i> propagates at a fast speed and that of the strong species <i>u</i> propagates at a slow speed, with their population masses largely segregated. Subsequent numerical simulations in Khan et al. (J Math Biol 83:23, 2021) suggest that for all possible initial states, only four different types of long-time dynamical behaviours can be observed: (1) chase-and-run coexistence, (2) vanishing of <i>u</i> with <i>v</i> spreading successfully, (3) vanishing of <i>v</i> with <i>u</i> spreading successfully, and (4) vanishing of both species. In this paper, we rigorously prove that, as the initial states vary, there are exactly five types of long-time dynamical behaviors: apart from the four mentioned above, there exists a fifth case, where both species spread successfully and their spreading fronts are kept within a finite distance to each other all the time. We conjecture that this new case can happen only when a parameter takes an exceptional value, which is why it has eluded the numerical observations of Khan et al. (J Math Biol 83:23, 2021) .</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofCalculus of Variations and Partial Differential Equationsen
dc.titleClassification of the spreading behaviors of a two-species diffusion-competition system with free boundariesen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s00526-021-02170-8en
dc.subject.keywords35R35en
dc.subject.keywordsMathematicsen
dc.subject.keywords92B05en
dc.subject.keywords35K51en
dc.subject.keywordsMathematics, Applieden
local.contributor.firstnameYihongen
local.contributor.firstnameChang-Hongen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.runningnumber54en
local.format.startpage1en
local.format.endpage34en
local.peerreviewedYesen
local.identifier.volume61en
local.identifier.issue2en
local.contributor.lastnameDuen
local.contributor.lastnameWuen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56207en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleClassification of the spreading behaviors of a two-species diffusion-competition system with free boundariesen
local.relation.fundingsourcenoteCHW was partially supported by the Ministry of Science and Technology of Taiwan under Grant MOST 109-2636-M-009-008 and MOST 110-2636-M-009-006.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.urlhttps://link.springer.com/article/10.1007/s00526-021-02170-8en
local.relation.grantdescriptionARC/DP190103757en
local.search.authorDu, Yihongen
local.search.authorWu, Chang-Hongen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000752536000005en
local.year.published2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/11beb0ec-c171-4e06-b7be-3bd91e24a42den
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.