Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56207
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Wu, Chang-Hong | en |
dc.date.accessioned | 2023-09-27T04:18:23Z | - |
dc.date.available | 2023-09-27T04:18:23Z | - |
dc.date.issued | 2022-02-03 | - |
dc.identifier.citation | Calculus of Variations and Partial Differential Equations, 61(2), p. 1-34 | en |
dc.identifier.issn | 1432-0835 | en |
dc.identifier.issn | 0944-2669 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56207 | - |
dc.description.abstract | <p>In this paper, we revisit the spreading behavior of two invasive species modelled by a diffusion-competition system with two free boundaries in a radially symmetric setting, where the reaction terms depict a weak-strong competition scenario. Our previous work (Du and Wu in Cal Var PDE 57:52, 2018) proves that from certain initial states, the two species develop into a "chase-and-run coexistence" state, namely the front of the weak species <i>v</i> propagates at a fast speed and that of the strong species <i>u</i> propagates at a slow speed, with their population masses largely segregated. Subsequent numerical simulations in Khan et al. (J Math Biol 83:23, 2021) suggest that for all possible initial states, only four different types of long-time dynamical behaviours can be observed: (1) chase-and-run coexistence, (2) vanishing of <i>u</i> with <i>v</i> spreading successfully, (3) vanishing of <i>v</i> with <i>u</i> spreading successfully, and (4) vanishing of both species. In this paper, we rigorously prove that, as the initial states vary, there are exactly five types of long-time dynamical behaviors: apart from the four mentioned above, there exists a fifth case, where both species spread successfully and their spreading fronts are kept within a finite distance to each other all the time. We conjecture that this new case can happen only when a parameter takes an exceptional value, which is why it has eluded the numerical observations of Khan et al. (J Math Biol 83:23, 2021) .</p> | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Calculus of Variations and Partial Differential Equations | en |
dc.title | Classification of the spreading behaviors of a two-species diffusion-competition system with free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s00526-021-02170-8 | en |
dc.subject.keywords | 35R35 | en |
dc.subject.keywords | Mathematics | en |
dc.subject.keywords | 92B05 | en |
dc.subject.keywords | 35K51 | en |
dc.subject.keywords | Mathematics, Applied | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Chang-Hong | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Germany | en |
local.identifier.runningnumber | 54 | en |
local.format.startpage | 1 | en |
local.format.endpage | 34 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 61 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Wu | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56207 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Classification of the spreading behaviors of a two-species diffusion-competition system with free boundaries | en |
local.relation.fundingsourcenote | CHW was partially supported by the Ministry of Science and Technology of Taiwan under Grant MOST 109-2636-M-009-008 and MOST 110-2636-M-009-006. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.url | https://link.springer.com/article/10.1007/s00526-021-02170-8 | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Du, Yihong | en |
local.search.author | Wu, Chang-Hong | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000752536000005 | en |
local.year.published | 2022 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/11beb0ec-c171-4e06-b7be-3bd91e24a42d | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490105 Dynamical systems in applications | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.