Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/5610
Title: | Recognition of Cursive Handwritten Country Names on Overseas-Addressed Mail | Contributor(s): | Leedham, Graham (author); Ho, Bernard (author) | Publication Date: | 2004 | Handle Link: | https://hdl.handle.net/1959.11/5610 | Abstract: | Background: Mail items posted within a country are either addressed for internal (within-country) delivery or to overseas destinations. Overseas-destined mail must be pre-sorted in the country of origin and forwarded to the destination country for further sorting and delivery. Handwritten addresses, which form a considerable percentage of all postal mail, pose a particularly difficult problem for automatic sorting. This paper presents an approach to automatic sorting of overseas destined mail items by locating and recognizing the handwritten country name. Method: The method proposed extracts structural features from the handwritten country names and combines this with OCR of the first letter of each word to solve the problem of limited vocabulary off-line unconstrained handwritten word recognition. The emphasis is to create a simple and reliable method of recognition, which can be readily implemented, in a fast real-time sorting system. Preprocessing, word holistic feature extraction, character classifier, and integration of lexical and syntactical knowledge are used in this system. Results: An accuracy of 85.0% correct country name recognition was achieved with an error rate (wrongly recognized country name) of 0.5% and a rejection rate (could not recognize the country name) of 14.5% using a test set of 1294 address images of the 371 variations of country names observed on overseas-addressed mail. Conclusions: The proposed method demonstrates the feasibility of fast and accurate country name location and sorting. | Publication Type: | Journal Article | Source of Publication: | International Journal of Information Technology, 10(1), p. 101-114 | Publisher: | World Scientific Publishing Company | Place of Publication: | Singapore | ISSN: | 0218-7957 | Fields of Research (FoR) 2008: | 080109 Pattern Recognition and Data Mining 080104 Computer Vision 080106 Image Processing |
Socio-Economic Objective (SEO) 2008: | 890199 Communication Networks and Services not elsewhere classified 810199 Defence not elsewhere classified 810107 National Security |
HERDC Category Description: | C2 Non-Refereed Article in a Scholarly Journal | Publisher/associated links: | http://www.intjit.org/journal/volume//10/1/101_6.pdf |
---|---|
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,136
checked on May 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.