Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56056
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorNi, Wenjieen
dc.date.accessioned2023-09-15T04:57:34Z-
dc.date.available2023-09-15T04:57:34Z-
dc.date.issued2022-06-16-
dc.identifier.citationMathematics in Engineering, 5(2), p. 1-26en
dc.identifier.issn2640-3501en
dc.identifier.urihttps://hdl.handle.net/1959.11/56056-
dc.description.abstract<p>This paper is concerned with the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary in dimension 3. For arbitrary dimension <i>N</i> ≥ 2, in [18], we have shown that its long-time dynamics is characterised by a spreading-vanishing dichotomy" moreover, we have found a threshold condition on the kernel function that governs the onset of accelerated spreading, and determined the spreading speed when it is finite. In a more recent work [19], we have obtained sharp estimates of the spreading rate when the kernel function J(|x|) behaves like |x|<sup><i>−β</i></sup> as |x| → ∞ in R<sup><i>N</i></sup> (<i>N</i> ≥ 2). In this paper, we obtain more accurate estimates for the spreading rate when <i>N</i> = 3, which employs the fact that the formulas relating the involved kernel functions in the proofs of [19] become particularly simple in dimension 3.</p>en
dc.languageenen
dc.publisherAIMS Pressen
dc.relation.ispartofMathematics in Engineeringen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThe Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in R3en
dc.typeJournal Articleen
dc.identifier.doi10.3934/mine.2023041en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsspreading rateen
dc.subject.keywordsMathematics, Interdisciplinary Applicationsen
dc.subject.keywordsMathematicsen
dc.subject.keywordsnonlocal di ffusionen
dc.subject.keywordsfree boundaryen
local.contributor.firstnameYihongen
local.contributor.firstnameWenjieen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.profile.emailwni2@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage26en
local.peerreviewedYesen
local.identifier.volume5en
local.identifier.issue2en
local.access.fulltextYesen
local.contributor.lastnameDuen
local.contributor.lastnameNien
dc.identifier.staffune-id:yduen
dc.identifier.staffune-id:wni2en
local.profile.orcid0000-0002-1235-0636en
local.profile.orcid0000-0002-3147-7296en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56056en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in R3en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorDu, Yihongen
local.search.authorNi, Wenjieen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/ff41d2fe-2737-4de2-a00c-da4b40155d14en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000817969000001en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/ff41d2fe-2737-4de2-a00c-da4b40155d14en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/ff41d2fe-2737-4de2-a00c-da4b40155d14en
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2024-11-03T13:40:02.920en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.for2020490105 Dynamical systems in applicationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/TheFisherKPPDuNi2022JournalArticle.pdfPublished version384.25 kBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons