Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56025
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aghajamali, Alireza | en |
dc.contributor.author | Karton, Amir | en |
dc.date.accessioned | 2023-09-12T05:22:22Z | - |
dc.date.available | 2023-09-12T05:22:22Z | - |
dc.date.issued | 2022-04 | - |
dc.identifier.citation | Micro and Nano Engineering, v.14, p. 1-5 | en |
dc.identifier.issn | 2590-0072 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56025 | - |
dc.description.abstract | <p>The isomerisation energies and thermal stabilities of the entire set of C<sub>40</sub> fullerene isomers are investigated using molecular dynamics simulations with the recently developed machine-learning-based Gaussian Approximation Potential (GAP-20) force field. Our simulations predict high statistical correlation between the relative isomerisation energy distribution of all C<sub>40</sub> isomers and their thermal fragmentation temperatures. The most energetically and thermally stable isomer is the symmetric C<sub>40</sub>-<i>D</i><sub>2</sub> isomer and its fragmentation temperature is 3875 ± 25 K. In contrast, the least stable isomer is the <i>D</i><sub>5d</sub> nanorod-shaped isomer which is 146.8 kcal mol<sup>−1</sup> higher in energy and decomposes at 2975 ± 25 K, i.e., around 900 K below the most stable isomer. In addition, we show that most isomers lie in the range between 20 and 60 kcal mol<sup>−1</sup> above the most stable isomer, and nearly 60% of isomers decompose in the temperature range of 3425–3675 K. These computational results provide valuable insights into the synthesis of C<sub>40</sub> fullerenes at high-temperatures.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Micro and Nano Engineering | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Correlation between the energetic and thermal properties of C40 fullerene isomers: An accurate machine-learning force field study | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.mne.2022.100105 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Alireza | en |
local.contributor.firstname | Amir | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | akarton@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | FT170100373 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 100105 | en |
local.format.startpage | 1 | en |
local.format.endpage | 5 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 14 | en |
local.title.subtitle | An accurate machine-learning force field study | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aghajamali | en |
local.contributor.lastname | Karton | en |
dc.identifier.staff | une-id:akarton | en |
local.profile.orcid | 0000-0002-7981-508X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56025 | en |
local.date.onlineversion | 2022-01-19 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Correlation between the energetic and thermal properties of C40 fullerene isomers | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/FT170100373 | en |
local.search.author | Aghajamali, Alireza | en |
local.search.author | Karton, Amir | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbff | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2022 | en |
local.year.published | 2022 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbff | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbff | en |
local.subject.for2020 | 340701 Computational chemistry | en |
local.subject.seo2020 | 280120 Expanding knowledge in the physical sciences | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/CorrelationKarton2022JournalArticle.pdf | Published Version | 1.65 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
6
checked on Jul 6, 2024
This item is licensed under a Creative Commons License