Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAghajamali, Alirezaen
dc.contributor.authorKarton, Amiren
dc.date.accessioned2023-09-12T05:22:22Z-
dc.date.available2023-09-12T05:22:22Z-
dc.date.issued2022-04-
dc.identifier.citationMicro and Nano Engineering, v.14, p. 1-5en
dc.identifier.issn2590-0072en
dc.identifier.urihttps://hdl.handle.net/1959.11/56025-
dc.description.abstract<p>The isomerisation energies and thermal stabilities of the entire set of C<sub>40</sub> fullerene isomers are investigated using molecular dynamics simulations with the recently developed machine-learning-based Gaussian Approximation Potential (GAP-20) force field. Our simulations predict high statistical correlation between the relative isomerisation energy distribution of all C<sub>40</sub> isomers and their thermal fragmentation temperatures. The most energetically and thermally stable isomer is the symmetric C<sub>40</sub>-<i>D</i><sub>2</sub> isomer and its fragmentation temperature is 3875 ± 25 K. In contrast, the least stable isomer is the <i>D</i><sub>5d</sub> nanorod-shaped isomer which is 146.8 kcal mol<sup>−1</sup> higher in energy and decomposes at 2975 ± 25 K, i.e., around 900 K below the most stable isomer. In addition, we show that most isomers lie in the range between 20 and 60 kcal mol<sup>−1</sup> above the most stable isomer, and nearly 60% of isomers decompose in the temperature range of 3425–3675 K. These computational results provide valuable insights into the synthesis of C<sub>40</sub> fullerenes at high-temperatures.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofMicro and Nano Engineeringen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleCorrelation between the energetic and thermal properties of C40 fullerene isomers: An accurate machine-learning force field studyen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.mne.2022.100105en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAlirezaen
local.contributor.firstnameAmiren
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.grant.numberFT170100373en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100105en
local.format.startpage1en
local.format.endpage5en
local.peerreviewedYesen
local.identifier.volume14en
local.title.subtitleAn accurate machine-learning force field studyen
local.access.fulltextYesen
local.contributor.lastnameAghajamalien
local.contributor.lastnameKartonen
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56025en
local.date.onlineversion2022-01-19-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCorrelation between the energetic and thermal properties of C40 fullerene isomersen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FT170100373en
local.search.authorAghajamali, Alirezaen
local.search.authorKarton, Amiren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbffen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbffen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/e165c311-4490-4d9e-b895-e1c078c1bbffen
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020280120 Expanding knowledge in the physical sciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/CorrelationKarton2022JournalArticle.pdfPublished Version1.65 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons