Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55192
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoxley, Peter Nen
dc.contributor.authorCheung, Ka-Waien
dc.date.accessioned2023-07-18T04:57:55Z-
dc.date.available2023-07-18T04:57:55Z-
dc.date.issued2023-01-30-
dc.identifier.citationEntropy, 25(2), p. 1-25en
dc.identifier.issn1099-4300en
dc.identifier.urihttps://hdl.handle.net/1959.11/55192-
dc.description.abstract<p>An informative measurement is the most efficient way to gain information about an unknown state. We present a first-principles derivation of a general-purpose dynamic programming algorithm that returns an optimal sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. The algorithm is applicable to states and controls that are either continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes and Gaussian processes. Recent results from the fields of approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow the measurement task to be solved in real time. The resulting solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly used greedy approaches. This is demonstrated for a global search task, where on-line planning for a sequence of local searches is found to reduce the number of measurements in the search by approximately half. A variant of the algorithm is derived for Gaussian processes for active sensing.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofEntropyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA Dynamic Programming Algorithm for Finding an Optimal Sequence of Informative Measurementsen
dc.typeJournal Articleen
dc.identifier.doi10.3390/e25020251en
dc.identifier.pmid36832617en
dcterms.accessRightsUNE Greenen
local.contributor.firstnamePeter Nen
local.contributor.firstnameKa-Waien
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailploxley@une.edu.auen
local.profile.emailkcheun22@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber251en
local.format.startpage1en
local.format.endpage25en
local.peerreviewedYesen
local.identifier.volume25en
local.identifier.issue2en
local.access.fulltextYesen
local.contributor.lastnameLoxleyen
local.contributor.lastnameCheungen
dc.identifier.staffune-id:ploxleyen
dc.identifier.staffune-id:kcheun22en
local.profile.orcid0000-0003-3659-734Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55192en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Dynamic Programming Algorithm for Finding an Optimal Sequence of Informative Measurementsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLoxley, Peter Nen
local.search.authorCheung, Ka-Waien
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86en
local.subject.for2020461105 Reinforcement learningen
local.subject.for2020460209 Planning and decision makingen
local.subject.for2020490506 Probability theoryen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ADynamicLoxleyCheung2023JournalArticle.pdfPublished version434.06 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 2, 2024

Page view(s)

344
checked on Aug 11, 2024

Download(s)

132
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons