Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/55192
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Loxley, Peter N | en |
dc.contributor.author | Cheung, Ka-Wai | en |
dc.date.accessioned | 2023-07-18T04:57:55Z | - |
dc.date.available | 2023-07-18T04:57:55Z | - |
dc.date.issued | 2023-01-30 | - |
dc.identifier.citation | Entropy, 25(2), p. 1-25 | en |
dc.identifier.issn | 1099-4300 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/55192 | - |
dc.description.abstract | <p>An informative measurement is the most efficient way to gain information about an unknown state. We present a first-principles derivation of a general-purpose dynamic programming algorithm that returns an optimal sequence of informative measurements by sequentially maximizing the entropy of possible measurement outcomes. This algorithm can be used by an autonomous agent or robot to decide where best to measure next, planning a path corresponding to an optimal sequence of informative measurements. The algorithm is applicable to states and controls that are either continuous or discrete, and agent dynamics that is either stochastic or deterministic; including Markov decision processes and Gaussian processes. Recent results from the fields of approximate dynamic programming and reinforcement learning, including on-line approximations such as rollout and Monte Carlo tree search, allow the measurement task to be solved in real time. The resulting solutions include non-myopic paths and measurement sequences that can generally outperform, sometimes substantially, commonly used greedy approaches. This is demonstrated for a global search task, where on-line planning for a sequence of local searches is found to reduce the number of measurements in the search by approximately half. A variant of the algorithm is derived for Gaussian processes for active sensing.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Entropy | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A Dynamic Programming Algorithm for Finding an Optimal Sequence of Informative Measurements | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/e25020251 | en |
dc.identifier.pmid | 36832617 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Peter N | en |
local.contributor.firstname | Ka-Wai | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ploxley@une.edu.au | en |
local.profile.email | kcheun22@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 251 | en |
local.format.startpage | 1 | en |
local.format.endpage | 25 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 25 | en |
local.identifier.issue | 2 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Loxley | en |
local.contributor.lastname | Cheung | en |
dc.identifier.staff | une-id:ploxley | en |
dc.identifier.staff | une-id:kcheun22 | en |
local.profile.orcid | 0000-0003-3659-734X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/55192 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Dynamic Programming Algorithm for Finding an Optimal Sequence of Informative Measurements | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Loxley, Peter N | en |
local.search.author | Cheung, Ka-Wai | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/5aab0192-b54a-42dd-8999-4d224d713a86 | en |
local.subject.for2020 | 461105 Reinforcement learning | en |
local.subject.for2020 | 460209 Planning and decision making | en |
local.subject.for2020 | 490506 Probability theory | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ADynamicLoxleyCheung2023JournalArticle.pdf | Published version | 434.06 kB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
2
checked on Nov 2, 2024
Page view(s)
344
checked on Aug 11, 2024
Download(s)
132
checked on Aug 11, 2024
This item is licensed under a Creative Commons License